

Code	No: R21032 (R10)	SET - 1
	II B. Tech I Semester Supplementary Examinations, June - 2015	
	(Com. to ME, AE, AME, MM)	
Time	3 hours Max	. Marks: 75
	Answer any FIVE Questions All Questions carry Equal Marks	
1. a)	Energy is a point function. Explain and prove.	(8M)
b)	Write the differences between microscopic and macroscopic approach.	(7M)
!. a)	State the limitations of first law of thermodynamics.	(5M)
b)	What is a thermal energy reservoir?	(5M)
c)	Define PMMI and the relevance of it.	(5M))
3.	What is Carnot cycle? Explain with the help of suitable diagrams. Derive the expression for efficiency of Carnot cycle.	15 M
l. a)	spherical shell of diameter 50 cm contains steam at a pressure of 40 bar and	(8M)
b)	0.85 dryness fraction. Calculate the mass of water and steam. Explain in detail the formation of steam with the help of T-H diagram indicating the salient points.	(7M)
	0.2 m^3 of air at 3 bar and 120^{0} C is contained in a system. A reversible adiabatic expansion takes place till the pressure falls to 1.5 bar. The gas is then heated at constant pressure till enthalpy increases by 75 kJ. Calculate the work done and the index of expansion, if the above processes are replaced by a single reversible polytropic process giving the same work between the same initial and final states	15 M 9 8.
ō.	A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of 25^{0} C .Find i) mole fraction of each constituent	15 M
	ii) equivalent molecular weight of the mixture	
	iv) Partial pressure and partial volumes v) volume and density of the mixture vi) $C_p \& C_v$ of the mixture	
7. a)	An engine working on Otto cycle has the following conditions: pressure at the beginning of compression is 1 bar and pressure at the end of compression is 12 bar. Calculate the compression ratio and air - standard efficiency of the engine Assume $x = 1.4$	(8M)
b)	Sketch the p-V and T-s diagrams of diesel cycle and derive its efficiency.	(7M)
3.	Derive the expression for COP of Bell Coleman cycle when the compression and expansion are isentropic.	(15M)
	1 of 1	

Code 1	No: R21032	(R10)	(SE	ET - 2
	II B. Tech I	Semester Supplementary Ex	xaminations, June - 2015	
		(Com. to ME, AE, AME	E, MM)	
Time:	3 hours		Max. N	Iarks: 75
		Answer any FIVE Que All Questions carry Equa	estions al Marks	
1. a)	Prove that heat and w	vork are path functions.		(8M)
b)	Define system and be examples.	oundaries. Explain various typ	es of system and boundary with	(7M)
2. a)	State the first law of to $Q=W+\Delta U$.	thermodynamics and prove the	at for non-flow process it leads	(8M)
b)	An engine operating and 300 K. If the eng thermal efficiency of	on a Carnot cycle works with gine receives 2000 KJ of heat, of the engine.	in temperature limits of 600 K evaluate the workdone and	(7M)
3. a)	Determine the power heat from a cooled sp refrigerator operates	r required to run a refrigerator pace at 0° C to the surrounding on reversed Carnot cycle	that transfers 2000 KJ/minof atmosphere at 27 ⁰ C.The	(8M)
b)	Derive Clausius ineq	uality and explain the signification	ance.	(7M)
4. a)	Explain the followin	g terms relating to steam formation of steam iii Enthalpy of we	ation: i. Sensible heat of water	(8M)
b)	Find the enthalpy and specific volume is 0.	d entropy of steam when the pr 09 m ³ /kg. Use steam tables on	ressure is 2 M Pa and the ly.	(7M)
5. a)	Write down the Van ideal gas equation of	ler Waal's equation of state. H state?	Iow does it differ from the	(8M)
b)	1kg of CO^2 has a vol i. Vander Waal's equ Take a = 362850Nm	ume of $1m^3at100^{\circ}C$. Compute nation ii. Perfect gas equation. $4/(kg-mole)^2$; $b = 0.0423m^3/k$	the pressure by kg-mole;R = 8314J/kg mole-K	(7M)
5. a)	A vessel of 6m ³ capa respectively at 30 ⁰ C. 0.295 kJ /kg-K and i i) Partial pressure	acity contains two gases A and If the value of R for the gases f the total weight of the mixtur ii) The mean value of R for	B in proportion of 45% is 0.288 kJ /kg. k and re is 2 kg, calculate or the mixture.	(8M)
b)	Write short notes on i) Mole fraction	ii) Volumetric analysis	iii) Dry bulb temperature	(7M)
		1 of 2		

Code]	No: R21032 R10 SI	ET - 2
7. a)	Calculate the percentage loss in the ideal efficiency of a diesel engine with compression ratio 14 if the fuel cut of f is delayed from 5% to 8%.	(8M)
b)	Compare the Otto cycle and Diesel cycle for the same compression ratios and same heat inputs.	(7M)
8. a)	Explain the difference between the Bell Coleman and Joule cycle of refrigeration.	(8M)
b)	An air refrigerating plant operates between 1.6 bar and 8 bar. The capacity of the plant is 5.5 ton. The temperature of the air entering the compressor and into an air engine is -4^{0} C and 29^{0} C respectively. The compression and expansion processes are polytropic with exponent n = 1.35. Determine the COP and the net power input for the plant.	(7M)

www.firstRanker.com

2 of 2

Code No: R21032

www.FirstRanker.com

R10

SET - 3

	II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS			
		(Com. to ME, AE, AME, MM)		
Tiı	me:	3 hours N	Aax. Marks: 7	75
		Answer any FIVE Questions All Questions carry Equal Marks		
1.	a)	Explain the terms state, path, process and cyclic process.	(8M))
	b)	Explain quasi-static process with examples.	(7M))
2.	a)	Explain working of constant volume gas thermometer with a neat diagram.	(8M))
	b)	Derive steady flow energy equation.	(7M))
3.	a)	State the Kelvin-Plank and Clausius statements of the second law of thermodynamics and establish equivalence between them.	(8M))
	b)	State and prove Carnot Principle or Carnot theorem.	(7M))
4.	a)	Explain working of separating and throttling calorimeter. Which type of calorimeter is used when steam is too wet?	(8M))
	b)	What is the pure substance? Draw and explain P-T (pressure-temperature) diagram for a pure substance.	(7M))
5.	a)	A mass of air is initially at 260° C and 700 KPa and occupies 0.028 m ³ . The air expanded at constant pressure to 0.084 m ³ . Apolytropic process with n = 1.5 is carried out, followed by a constant temperature process, which completes a cy All the processes are reversible i. Sketch the cycle in the P-v &T-s planes ii. Find heat received & rejected in cycle iii. Find efficiency (n) of the cycle.	r is (8M) then ycle. the)
	b)	What is the difference between ideal gas and a perfect gas? What is equation estate?	of (7M))
6.	a)	State Dalton's law of partial pressures.	(8M))
	b)	Atmospheric air at 30° C and a relative humidity of 65% is cooled at a constant pressure of 100 kN/m ² to 20° C. Calculate i. the final relative humidity and ii. the change in specific humidity.	nt (7M))

1 of 2

Code	No: R21032 R10 SE	ET - 3
7. a)	An engine equipped with a cylinder having a bore of 12 cm and a stroke of 40 cm operates on an Otto cycle. If the clearance volume is 1600 cm ³ , compute the air standard efficiency.	(8M)
b)	Derive the expression for efficiency of air standard Otto cycle.	(7M)
8.	A R-12 vapour compression refrigeration system is operating at a condenser pressure of 10 bar and an evaporator pressure of 2.2 bar. Its refrigeration capacity is 14 tonnes. The values of enthalpy at the inlet and outlet of the evaporator are 650 and 200 kJ/kg. The specific volume at inlet to the reciprocating compressor is $0.085 \text{ m}^3/\text{kg}$. The index of compression for the compressor is 1.15 . Determine: (a) the power input in kW required for the compressor and (b) the COP. Take 1 tone of refrigeration as equivalent to heat removal at the rate of 3.517 kW .	(15 M)

www.FirstRanker.com

2 of 2

Code	No: R21032 (R10)	SET - 4
Timo	II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME, MM)	v. Morko: 75
Time:	3 hours Ma	x. Marks: 75
	Answer any FIVE Questions All Questions carry Equal Marks	
1. a)	Discuss about concept of continuum	(8M)
b)	Explain causes for irreversibility in detail.	(7M)
2. a)	A blower handles 1 kg/sec of air at 20° C and consumes a power of 15 kW. The inlet and outlet velocities of air are 100 m/s and 150 m/s respectively. Find the exit air temperature, assuming adiabatic conditions	(8M)
b)	Write a note on ideal gas temperature scale.	(7M)
3. a)	Prove that " All reversible heat engines operating between the two given therma reservoirs have same efficiency".	l (8M)
b)	State and prove Clasius theorem.	(7M)
4. a)	Explain working of throttling calorimeter with the help of diagram.	(8M)
b)	Derive Clasius Clapeyron equation and explain its significance.	(7M)
5.	1 kg of air at 1.2 bar pressure and 18° C is compressed isentropically to 7 bars. Find the final temperature and the work done. If the air is cooled at the upper pressure to the original temperature of 18° C, what amount of heat is rejected and what further work of compression is done.	15 M
5.	A vessel of $2m^3$ capacity contains oxygen at 10 bar and 60^{0} C. The vessel is connected to another vessel of $4m^3$ capacity containing carbon monoxide at 1.5 k and 25^{0} C. A connecting valve is opened and the gases mix adiabatically calculat i) The final pressure and temperature of the mixture b) Change of entropy of the oxygen. Take for oxygen $C_v = 21.07$ kJ/Mol-K For carbon monoxide $C_v = 20.86$ kJ/Mol-K	15 M bar te
7. a)	Explain graphically the variation of the efficiency of Diesel cycle with	(8M)
b)	compression ratio and cut off ratio. A diesel engine has a compression ratio of 15 and heat addition at constant pressure takes place at 6% of stroke. Find the air standard efficiency of the engine.	(7M)
8. a)	Explain the important components of a simple vapour compression refrigeration system. Also discuss the functions of each component.	(8M)
b)	An air refrigerating plant operates between 1.6 bar and 8 bar. The capacity of th plant is 5.5 ton. The temperature of the air entering the compressor and into an a engine is -4^{0} C and 29^{0} C respectively. The compression and expansion processes are polytropic with exponent n = 1.35. Determine the COP and the net power in for the plant.	e (7) air s put