R13

SET-1

II B. Tech I Semester Supplementary Examinations, June - 2015
 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

1 a) What is elastic limit and elasticity?
b) Draw the S.F.D and B.M.D of a cantilever carrying point load at the free end.
c) Write the assumptions of simple bending.
d) A cantilever of length 2.6 m carries a u.d. 1 of $16.5 \mathrm{kN} / \mathrm{m}$ length over entire length. If moment of inertia of the beam is $7.90 \times 10^{7} \mathrm{~mm}^{4}$ and value of $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$, determine the deflection at the free end.
e) A spherical vessel 1.5 m diameter is subjected to an internal pressure of
$2 \mathrm{~N} / \mathrm{mm}^{2}$. Find the thickness of the plate required if maximum stress is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
f) Define the terms Torsion and torsional rigidity.

PART-B

2 a) Derive an expression for the major and minor principle stresses on an oblique 12 M plane, when the body is subjected to direct stresses in two mutually perpendicular directions accompanied by shear stresses.
b) A steel rod which tapers uniformly from 5 cm diameter to 3 cm diameter in length of 50 cm , is subjected to an axial load of 6000 N .If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find the extension of the rod.

3 a) A cantilever of length 4 m carries a gradually varying load, zero at the free end to
$2 \mathrm{kN} / \mathrm{m}$ at the fixed end .Draw the S.F.D and B.M.D for the cantilever.
b) Derive the relation between loading, shear force and bending moment

4 a) A Cantilever of length 2 m fails when a load of 2 kN is applied at the free end. If the section of the beam is $40 \mathrm{~m} \times 60 \mathrm{~m}$,find the stress at the failure.
b Show that for a rectangular section the maximum shear stress is 1.5 times the 8 M average stress.

5 a) A cantilever beam AB of length 6 m carries a point load of 100 kN at free end and another point load 100 kN at 3 m from the free end.If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8}$ mm^{4} for the cantilever then determine the slope and deflection at the free end by Moment area method.
b) Write in brief about double integration method.

6 Derive Lami's equation of thick cylinders. 16M

7 a) Derive the expression for the crippling load when both ends of the column are 10 M hinged.
b) Define polar modulus .Derive polar modulus for solid shaft and hollow shaft.

II B. Tech I Semester Supplementary Examinations, June - 2015
 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A
1 a) What is tangential stress and longitudinal stress?
b) Draw the S.F.D and B.M.D of a cantilever carrying u.d.l throughout.
c) Define section modulus. Derive for rectangular section.
d) A cantilever of length 3.6 m carries a u.d.l of $12.5 \mathrm{kN} / \mathrm{m}$ length over entire length. If moment of inertia of the beam is $7.90 \times 10^{7} \mathrm{~mm}^{4}$ and value of $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine the deflection at the free end.
e) A spherical vessel 2.0 m diameter is subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$. Find the thickness of the plate required if maximum stress is not to exceed $180 \mathrm{~N} / \mathrm{mm}^{2}$.
f) Write the limitations of Euler's formula.

PART -B

2 a) Derive an expression for the stresses on an oblique plane of a rectangular 12 M body, when the body is subjected simple shear stresses.
b) A steel rod which tapers uniformly from 6 cm diameter to 4 cm diameter in length of 60 cm , is subjected to an axial load of 7000 N . If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find the extension of the rod.

3 a) A cantilever of length 3 m carries a gradually varying load, zero at the free end to $1 \mathrm{kN} / \mathrm{m}$ at the fixed end. Draw the S.F.D and B.M.D for the cantilever.
b) Derive the relation between loading, shear force and bending moment

4 Derive the equation $M / I=f / y=E / R$
5 a) A cantilever beam AB of length 4 m carries a point load of 100 kN at free end and another point load 100 kN at 2 m from the free end. If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8}$ mm^{4} for the cantilever then determine the slope and deflection at the free end by Moment area method.
b) Write in brief about Macualay's method.

6 a) A cylindrical vessel is 1.6 m diameter and 5 m long is closed at ends by rivets. It is subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$. If the maximum principal stress is not to exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$, find the thickness of the shell. Assume $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$. Find the change in diameter, length and volume of the shell.
b) Differentiate between thin cylinder and thick cylinder.

II B. Tech I Semester Supplementary Examinations, June - 2015
 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Time: 3 hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any THREE Questions from Part-B

PART -A
1 a) State Hooke's law
b) Write about different types of beams and different loadings.
c) Write about neutral axis and moment of resistance.
d) What is deflection, slope and radius of curvature in a beam?
e) Derive expression for circumferential stress in a thin cylindrical shell.
f) What do you mean by strength of a shaft?

PART -B

2 Derive the relation between three moduli of elasticity
3 A beam of length is 10 m is simply supported and carries point loads of 5 kN 16 M each at a distance of 3 m and 7 m from left support and also a uniformly distributed load of $1 \mathrm{kN} / \mathrm{m}$ between the point loads. Draw the S.F.D and B.M.D

4 a) A Cantilever of length 2 m fails when a load of 2 kN is applied at the free end. If the section of the beam is $40 \mathrm{~m} \times 60 \mathrm{~m}$, find the stress at the failure.
b) Prove that maximum shear stress in a circular section of a beam is $4 / 3$ times the average shear stress.

5 a) A beam of span 8 m and of uniform flexural rigidity EI $=40 \mathrm{MN}-\mathrm{m}^{2}$, is simply supported at its ends. It carries a uniformly distributed load of $15 \mathrm{kN} / \mathrm{m}$ run over the entire span. It is also subjected to a clockwise moment of 160 kNm at a distance of 3 m from left support. Calculate the slope of the beam at the point of application of moment.
b) Write about moment area method.

6 Derive Lami's equation of thick cylinders.
7 a) A solid cylindrical shaft is to transmit 300 kW power at 100 r.p.m .If the shear 6 M stress is not to exceeed $80 \mathrm{~N} / \mathrm{mm}^{2}$,find its diameter.
b) Derive the expression for the crippling load when both ends of the column are 10 M hinged.

II B. Tech I Semester Supplementary Examinations, June - 2015
 MECHANICS OF SOLIDS
 (Com. to ME, AME, AE, MTE)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART - A

1 a) Define modular ratio, thermal stresses and thermal strain
4
b) Draw the B.M.D of simply supported beam with uniformly varying load with 4 zero at free ends and w per metre run at the centre.
c) Draw the shear stress diagram of T section.
d) A cantilever of length 3.0 m carries a point load of 12.5 kN at the free end. If moment of inertia of the beam is $1.00 \times 10^{8} \mathrm{~mm}^{4}$ and value of $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine the deflection at the free end.
e) Derive expression for longitudinal stress in a thin cylindrical shell.
f) Write the assumptions made in derivation of shear stress produced in circular 3 shaft subjected to torsion.

PART -B

2
a) Derive the relation between modulus of elasticity and modulus of rigidity.
b) Determine the expression for strain energy stored in a body due to shear stress.

3 A beam of length is 12 m is simply supported and carries point loads of 6 kN each at a distance of 4 m and 8 m from left support and also a uniformly distributed load of $2 \mathrm{kN} / \mathrm{m}$ between the point loads. Draw the S.F.D and B.M.D

4 Derive the shear stress at any point in the cross section of a beam which is subjected to a shear force F.

5 a) A cantilever beam AB of length 4 m carries a point load of 100 kN at free end and another point load 100 kN at 2 m from the free end. If $\mathrm{E}=10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8}$ mm^{4} for the cantilever then determine the slope and deflection at the free end by Double integration method.
b) Write in brief about Macualay's method.

6 a) A cylindrical vessel is 1.6 m diameter and 5 m long is closed at ends by rivets. It is subjected to an internal pressure of $4 \mathrm{~N} / \mathrm{mm}^{2}$. If the maximum principal stress is not to exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$, find the thickness of the shell. Assume $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0.25$. Find the change in diameter, length and volume of the shell.
b) Differentiate between thin cylinder and thick cylinder.

Derive the equation $\tau / \mathrm{R}=\mathrm{Ce} / \mathrm{L}=\mathrm{q} / \mathrm{R}$

