

R10

Set No. 1

III B.Tech I Semester Supplementary Examinations, June - 2015 CONCRETE TECHNOLOGY

(Civil Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks

b) What are the different types of admixtures? Write about performance of GGBS in concrete. 2 a) What are the different tests of mechanical properties of aggregates? [7] b) What is bulking of aggregates? Write about gap graded and well graded aggregates. [8] 3 a) Write the steps involved in the manufacture of concrete. [8] b) What is the effect of time and temperature on workability? [7] 4 a) What is the relation between compression strength and tensile strength? [7] b) Write about water-cement ratio and Abram's law. [8] 5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method. 8 a) Write about the following [4] (a) No-fines concrete [4] (b) High density concrete				
concrete. 2 a) What are the different tests of mechanical properties of aggregates? [7] b) What is bulking of aggregates? Write about gap graded and well graded aggregates. [8] 3 a) Write the steps involved in the manufacture of concrete. [8] b) What is the effect of time and temperature on workability? [7] 4 a) What is the relation between compression strength and tensile strength? [7] b) Write about water-cement ratio and Abram's law. [8] 5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method. 8 a) Write about the following [4] (a) No-fines concrete [4] (b) High density concrete [4]	1	a)	What are the different types of cements? Write about any two in detail.	[8]
b) What is bulking of aggregates? Write about gap graded and well graded aggregates. [8] 3 a) Write the steps involved in the manufacture of concrete. [8] b) What is the effect of time and temperature on workability? [7] 4 a) What is the relation between compression strength and tensile strength? [7] b) Write about water-cement ratio and Abram's law. [8] 5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%.Design the mix by using IS code method. 8 a) Write about the following [4] (a) No-fines concrete [4] (b) High density concrete [4]		b)	Y 2	[7]
3 a) Write the steps involved in the manufacture of concrete. b) What is the effect of time and temperature on workability? 4 a) What is the relation between compression strength and tensile strength? b) Write about water-cement ratio and Abram's law. [8] 5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method. 8 a) Write about the following (a) No-fines concrete (b) High density concrete [4]	2	a)	What are the different tests of mechanical properties of aggregates?	[7]
b) What is the effect of time and temperature on workability? [7] 4 a) What is the relation between compression strength and tensile strength? [7] b) Write about water-cement ratio and Abram's law. [8] 5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%.Design the mix by using IS code method. 8 a) Write about the following [4] (a) No-fines concrete [4] (b) High density concrete [4]		b)	What is bulking of aggregates? Write about gap graded and well graded aggregates.	[8]
4 a) What is the relation between compression strength and tensile strength? b) Write about water-cement ratio and Abram's law. [8] 5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method. 8 a) Write about the following (a) No-fines concrete (b) High density concrete [4]	3	a)	Write the steps involved in the manufacture of concrete.	[8]
b) Write about water-cement ratio and Abram's law. [8] 5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%.Design the mix by using IS code method. 8 a) Write about the following [4] (a) No-fines concrete [4] (b) High density concrete		b)	What is the effect of time and temperature on workability?	[7]
5 a) What are different NDT methods? Write codal provisions for NDT. [10] b) Write the factors affecting the strength of concrete. [5] 6 Define shrinkage. Write in detail the classification of shrinkage. [15] 7 Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method. 8 a) Write about the following (a) No-fines concrete (b) High density concrete [4]	4	a)	What is the relation between compression strength and tensile strength?	[7]
b) Write the factors affecting the strength of concrete. [5] Define shrinkage. Write in detail the classification of shrinkage. [15] Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%.Design the mix by using IS code method. Write about the following (a) No-fines concrete (b) High density concrete [4]		b)	Write about water-cement ratio and Abram's law.	[8]
Define shrinkage. Write in detail the classification of shrinkage. [15] Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method. Write about the following (a) No-fines concrete (b) High density concrete [4]	5	a)	What are different NDT methods? Write codal provisions for NDT.	[10]
Design a concrete mix of M30 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%.Design the mix by using IS code method. 8 a) Write about the following (a) No-fines concrete (b) High density concrete [4]		b)	Write the factors affecting the strength of concrete.	[5]
gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method. 8 a) Write about the following (a) No-fines concrete (b) High density concrete [4]	6		Define shrinkage. Write in detail the classification of shrinkage.	[15]
(a) No-fines concrete [4] (b) High density concrete [4]	7		gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m ³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free	[15]
(b) High density concrete [4]	8	a)		[4]
(a) Light visitable aggregate concrete				
(c) Light weight aggregate concrete [5] (d) SIFCON			(c) Light weight aggregate concrete (d) SIECON	[3]
(u) SIFCON *****				

[11][11][11][11][11][11]

R10

Set No. 2

III B.Tech I Semester Supplementary Examinations, May/June - 2015 CONCRETE TECHNOLOGY

(Civil Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks

1	a)	What are the different tests on cements? Write in detail.	[9]
	b)	Write in detail about accelerators and retarders.	[6]
2	a)	Write in detail about size, shape, strength and durability of aggregate?	[10]
	b)	Write about alkali aggregate reaction.	[15]
3		Define workability. Write the tests to measure workability.	[15]
4	a)	Write about gel space ratio and gain of strength of concrete with age? [[8]
	b)	Write about accelerated curing test.	[7]
5	a)	What are different NDT methods? Write codal provisions for NDT.	[10]
	b)	What is curing of concrete?	[5]
6	a)	Define elasticity, creep and shrinkage.	[7]
	b)	What is the relation between modulus of elasticity and strength?	[8]
7		Design a concrete mix of M35 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.8 and 2.7 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%.Design the mix by using IS code method.	[15]
8		Write about the following (a) No-fines concrete	[4] [4]
		(b) High performance concrete	[4]
		(c) cellular concrete(d) SCC	[3]

R10

Set No. 3

III B.Tech I Semester Supplementary Examinations, May/June - 2015 CONCRETE TECHNOLOGY (Civil Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

1	a)	What are the different grades of cements? Write about tests of physical properties of cement in detail.	[8]
	b)	What are the different types of admixtures? Write about fly ash and silica fume.	[7]
2	a)	Write in detail about specific gravity, bulk density, porosity and moisture content of aggregate?	[7]
	b)	What is bulking of aggregates? Write about gap graded and well graded aggregate.	[8]
3		Define workability. What are the factors effecting the workability.	[15]
4	a)	What is the relation between compression strength and tensile strength?	[7]
	b)	Write about the maturity concept of concrete.	[8]
5	a)	Write the testing procedure of determination of flexural strength.	[10]
	b)	Write the factors affecting the strength of concrete.	[5]
6		Define shrinkage. Write in detail the classification of shrinkage.	[15]
7		Design a concrete mix of M40 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.85 and 2.75 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%. Design the mix by using IS code method.	[15]
8		Write about fibre reinforced concrete and the factors affecting the properties of FRC.	[15]

R10

Set No. 4

III B.Tech I Semester Supplementary Examinations, May/June - 2015 CONCRETE TECHNOLOGY

(Civil Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks

1	a)	What are the different grades of cements? Write the tests of soundness and fineness of cement.	[8]
	b)	What are the different types of admixtures? Write about plasticisers and super plasticisers.	[7]
2	a)	What are the different tests of mechanical properties of aggregates?	[7]
	b)	What is bulking of aggregates? Write about grading curves.	[8]
3		Define workability. Write about segregation and bleeding.	[15]
4	a)	What is the relation between compression strength and tensile strength?	[7]
	b)	Write about quality of mixing water in concrete.	[8]
5	a)	Write the testing procedure of determination of tensile strength.	[10]
	b)	Write the factors affecting the strength of concrete.	[5]
6		Define creep of concrete. Write the factors influencing creep, relation between creep and time and effect of creep.	[15]
7		Design a concrete mix of M45 grade. Take a standard deviation of 5MPa. The specific gravities of coarse aggregate and fine aggregate are 2.85 and 2.75 respectively. The bulk density of coarse aggregate is 1600 kg/m³ and fineness modulus of fine aggregate is 2.70. A slump of 60mm is necessary. The water absorption of coarse aggregate is 2% and free moisture in fine aggregate is 1%.Design the mix by using IS code method.	[15]
8		Write about the following (a) Polymer concrete (b) Ready mixture concrete (c) Shotcrete (d) Self healing concrete	[4] [4] [4] [3]
