

www.FirstRanker.com

Set No. 1

III B.Tech I Semester Supplementary Examinations, May/June - 2015 WATER RESOURCES ENGINEERING-I

(Civil Engineering)

Time: 3 hours

Code No: R31014

Max. Marks:75

Answer any FIVE Questions All Questions carry equal marks

1	a)	What factors you consider in selecting a site for a rain-gauge station?	[7]
	b)	What are the different forms of precipitation? Which of them are of significance to a civil engineer?	[8]
2	a)	The rates of rainfall for the successive 30 min period of a 3-hour storm are: 1.6, 3.6, 5.0, 2.8, 2.2, 1.0 cm/hr. The corresponding surface runoff is estimated to be 3.6cm. Establish the ϕ -index. Also determine the W-index.	[7]
	b)	What is a rainfall hyetograph? How is it derived from a given rainfall mass curve?	[8]
3	a)	Write down the convolution equation and explain its physical interpretation with a neat sketch.	[7]
	b)	Describe how unit hydrograph can be used to predict the runoff from a storm. What are the uses of unit hydrograph?	[8]
4	a)	Describe the method of estimating a T_r – year flood using Log-Pearson type III distribution.	[7]
	b)	Define 'flood routing'. What are the usual assumptions made in routing a flood in a reservoir?	[8]
5	a)	Derive an expression for the steady state discharge of well fully penetrating into a unconfined aquifer.	[7]
	b)	List out the assumption made in the analysis of steady radial flow into well.	[8]
6	a)	Describe border strip method of irrigation. Derive the expression for the time required to cover a given area by this method, for a given rate of discharge and the rate of infiltration of water in the soil.	[7]
	b)	Discuss in brief the benefits and ill-effects of irrigation.	[8]
7	a)	Explain the following irrigation efficiencies: i)Water conveyance efficiency ii)Water application efficiency iii)Water use efficiency iv)Water storage efficiency v) Water distribution efficiency	[7]
	b)	A crop requires a total depth of 9.2 cm of water for a base period of 120 days. Find the duty of water.	[8]
8	a)	Explain various types of canals, according to various classification systems.	[7]
	b)	Give a brief note on "Balancing depth of cutting"	[8]

www.FirstRanker.com

R10

Set No. 2

Max. Marks: 75

[8]

[7]

III B.Tech I Semester Supplementary Examinations, May/June - 2015 WATER RESOURCES ENGINEERING-I

(Civil Engineering)

Time: 3 hours

Code No: **R31014**

Answer any FIVE Questions

All Questions carry equal marks

- 1 a) Discuss with a neat sketch various methods used to compute average rainfall over a [7] basin.
 - b) List out various practical applications of hydrology.
- 2 a) Explain briefly the infiltration process. What are the factors that influence the process [7] of infiltration?
 - b) The hyetograph of a storm of 6 h duration is constructed with a varying time interval: [8] at 20 minutes interval for the first one hour, at 40 minute interval for the next 2 hours and one hour interval for the last 3 hours. The successive ordinates of the hyetograph in mm/h are 66, 75,54,48,69,51,38,47 and 25. Determine the total rainfall depth produced by the storm.
- 3 a) What do you mean by unit hydrograph? Describe the step by step procedure of the [7] derivation of a unit hydrograph from an isolated storm.
 - b) Sketch a typical hydrograph resulting from an isolated storm and explain different [8] features of it.
- a) From the historical data of annual flood peaks of a catchment the mean and standard [7] deviation are estimated as 20000 m³/sec and 10000 m³/sec. An existing structure on this catchment has been designed for 40000 m³/sec. What could be its return period? (Assume standard deviation and mean of the reduced extremes which depend on the sample size and taken from Gumble's table are 1.06 and 0.52).
 - b) How does 'stream flow routing' differ from reservoir flood routing? [8]
- 5 a) With a neat sketch explain different types of aquifers.
 - b) In an area of 110 ha, the water table dropped by 5 m due to continuous ground water [8] pumping. If the porosity of the aquifer soil is 26% and the specific retention is 10%, determine:

(*i*) the specific yield of the aquifer,

(*ii*) the decrease in the ground water storage.

- 6 a) Compare surface irrigation with sub-surface irrigation. [7]
 - b) Describe in detail sprinkler method of irrigation. Indicate the advantages and [8] limitation of this method.

1 of 2

www.FirstRanker.com

Code No: **R31014**

R10

Set No. 2

7	a)	What are the factors affecting duty? How can a	luty be improved?	[7]
	b)	Explain various factors affecting consumptive	use of water.	[8]
8	a)	Explain Lacey's silt theory		[7]
	b)	Using Kennedy's theory, design a channel sect Discharge Q = Kutter's N = Critical velocity Side slopes = Bed slope =	16cumecs 0.0225 ratio m = 1 $\frac{1}{2}$: 1	[8]

2 of 2

www.FirstRanker.com

Set No. 3

Max. Marks: 75

[7]

[8]

III B.Tech I Semester Supplementary Examinations, May/June - 2015 WATER RESOURCES ENGINEERING-I

(Civil Engineering)

Time: 3 hours

Code No: R31014

Answer any FIVE Questions All Questions carry equal marks

1	a)	Discuss with a neat sketch various types of rain gauges.	[7]
	b)	Describe the hydrological cycle with a neat sketch.	[8]

- 2 a) Discuss the various factors affecting evapotranspiration.
 - b) Define Ø-index and W-index and bring out the difference between them. How is Ø- [8] index determined from the rainfall hyetograph?
- 3 a) The ordinates of a 3-hr unit hydrograph are given below. Derive the flood hydrograph [7] due to a 3-hr storm, producing a rainfall excess (net rain) of 4 cm. The base flow is estimated to be 4cumecsand may be assumed constant.

Time	0	3	6	9	12	15	18	21	24	27
(hr)						•				
3-hr UH ordinates	0	1.5	4.5	8.6	12.0	9.4	4.6	2.3	0.8	0
(cumecs)				5	*					

- b) Define an 'S-curve hydrograph' giving a neat sketch, and state its use. [8]
- 4 a) Describe the method of estimating a T_r year flood using Gumbel's distribution. [7]
 - b) Differentiate between channel routing and reservoir routing.
- 5 a) In a certain alluvial basin of 110 km², 100 Mm³ of ground water was pumped in a year [7] and the ground water table dropped by 4 m during the year. Assuming no replenishment, estimate the specific yield of the aquifer. If the specific retention is 12%, what is the porosity of the soil?
 - b) Derive an expression for the steady state discharge of well fully penetrating into a [8] confined aquifer.
- 6 a) Describe in detail the border strip method of irrigation. [7]
 - b) Discuss the various sub-surface irrigation methods. Indicate their limitations. [8]

1 of 2

www.FirstRanker.com

Code No: **R31014**

R10

Set No. 3

7	a)	Explain the terms 'duty' and 'delta'. Derive a relationship between the two.	[7]
	b)	Explain how frequency of irrigation is determined.	[8]
8	a)	Describe Kennedy's silt theory. What are the drawbacks in this theory?	[7]
	b)	Using Lacey's theory, design an irrigation channel for the following data: Discharge $Q = 60$ cumecs Silt factor $f = 1$ Side slopes $= 1/2$: 1.	[8]

2 of 2

www.FirstRanker.com

www.FirstRanker.com

Max. Marks: 75

Code No: **R31014**

III B.Tech I Semester Supplementary Examinations, May/June - 2015 WATER RESOURCES ENGINEERING-I

(Civil Engineering)

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1	a)	Explain three methods of determining the mean areal depth of precipitation over a basincovered by several rain-gauge stations.						
	b)	Describe with a neat sketch the principle of working of Simon's non-recording rain gauge.						
2	a)	Differentiate between i. Potential evapotranspiration and actual evapotranspiration ii. Actual infiltration rate and infiltration capacity	[7]					
	b)	Explain various factors affecting infiltration.						
3	a)	The ordinates of a 12-hour unit hydrograph in cumecare given below. Compute 4-hour unit hydrograph ordinates using S-curve technique. Time (hr): 0 6 12 18 24 30 36 42 48 54 60 66 72 12-hr UGO: 0 1 4 8 16 19 15 12 8 5 3 2 1	[7]					
	b)	Explain 'synthetic unit hydrograph'.	[8]					
4	a)	Explain clearly the I.S.D. curves method of reservoir flood routing. What are the factors to be considered in choosing the routing period?	[7]					
	b)	Discuss causes for flood and effect of floods.	[8]					
5	a)	a) Determine the diameter of an open well in coarse sand to give an average yield 220lpm under a safe working depression head of 2.5 m (Hint: for coarse sand $C \approx 1$ h 1).						
	b)	Explain various rock properties effecting ground water.	[8]					
6	a)	Explain various advantages and disadvantages of drip irrigation?						
	b)	Explain zig-zag method of irrigation along with a neat sketch.	[8]					
7	a)	Discuss in brief the functions of irrigation water. What are the standards of irrigation water?						
	b)	What are the factors affecting duty? How can duty be improved?						
8	a)	Compare Kennedy's and Lacey's theories for the design of irrigation channel in alluvial soil.	[7]					
	b)	Design an irrigation canal to carry a discharge of 6cumec. Assume $N = 0.0225$, $m = 1.0$ and $(B/D) = 3.24$	[8]					

*****]