Set No. 1

III B.Tech I Semester Supplementary Examinations, May/June - 2015

LINEAR \& DIGITAL IC APPLICATION

(Electrical and Electronics Engineering)
Time: $\mathbf{3}$ hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks
 $* * * * *$

Abstract

1 a) Sketch a current mirror circuit and explain its operation. Show how a current mirror can be used as a constant current circuit for a differential amplifier. Explain the circuit operation and discuss its effect. b) Explain the importance of level translator in an op amp.

2 a) Why is it necessary to use an external offset voltage compensating network with practical op - amp circuits?
b) Compare and contrast an ideal op - amp and practical op - amp.
c) Define slew rate and what causes it. How is the slew rate measured?

3 a) With suitable circuit diagram explain the operation of a triangular wave generator using
b) Explain the principle of operation of a precision full wave rectifier with waveforms
4 a) Draw and explain the operation of Mono stable multivibrator using 555 timer. Derive the expression for time delay.
b) Draw the dc voltage versus phase difference characteristic of balanced modulator phass detector of a PLL indicating all important regions.

6 a) Write short notes on priority encoder.
b) Explain the logic diagram and functional table of 4 to 1 line multiplexer.

7 a) Design and implement a MOD-10 synchronous counter using J-K flip-flops. [8]
b) Draw logical diagram of a 4-bit shift register. Explain how shift-left and shift-right [7]

8 a) Give the comparison between PROM, PLA and PAL.
b) Explain the functional behavior of Static RAM cell? Show the internal structure of 8×4 [9] static RAM.

III B.Tech I Semester Supplementary Examinations, May/June - 2015
 LINEAR \& DIGITAL IC APPLICATION
 (Electrical and Electronics Engineering)
 Max. Marks: 75
 Answer any FIVE Questions
 All Questions carry equal marks

Time: $\mathbf{3}$ hours

1 a) Explain the classification of ICs according to their method of fabrication.
b) Discuss about dc analysis of Dual input balanced output amplifier.

2 a) Define the Op-Amp parameters: i) Input offset Voltage, $\mathrm{V}_{\mathrm{io}, \text {; }}$; i) Input bias current, I_{io} With a practical setup explain how these parameters can be measured.
b) Explain frequency compensation techniques used in op-amps.

3 a) Draw \& discuss the operation of a log amplifier with a circuit diagram. Derive the expression for output voltage.
b) Design a current to voltage converter using Op-amp and explain how it can be used to measure the output of a photocell.

4 a) Design an Astable multivibrator using 555 timer for a frequency of 1 kHz and a duty cycle of 70%.Assume $\mathrm{C}=0.1 \mu \mathrm{f}$.
b) Give the block diagram of NE 565 PLL and explain the role of each block. Make circuit connections to track the incoming signal and explain its operation.

5 a) Write the advantages of active filter. Explain different configurations of active filter and discuss their merits and demerits.
b) What are servo-tracking A/D converters? Why are they called so? How is it better than counter type A/D converter?

6 a) Realize 16 input multiplexer using two 8 input multiplexers.
b) Implement a 4 bit ripple adder using half-adders/full-adders.

7 a) Design a modulo- 100 counter using two 74×163 binary counters?
b) Design a 4 bit bidirectional shift register using D flip-flops (Use relevant digital ICs).

8 a) Describe the difference between PLA \& PAL using logic diagrams.
b) With the help of a circuit diagram, explain the read and write operations of a dynamic RAM cell. Differentiate between static RAM and dynamic RAM.
-000-

Set No. 3

III B.Tech I Semester Supplementary Examinations, May/June - 2015

LINEAR \& DIGITAL IC APPLICATION

(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1 a) What are the three differential amplifier configurations? Compare and contrast these configurations.
b) Explain ac analysis of differential amplifier.

2 a) List out the AC characteristics of an op-amp and discuss about them.
b) b) Define the terms, CMRR and input bias current. Describe the techniques used for the measurement of these parameters.

3 a) Draw the circuit diagram of an integrator circuit and explain its functioning with the Input-output wave forms. Derive the output voltage V_{0} of an integrator circuit.
b) Design a monostable multivibrator with trigger pulse shaping which will drive a LED ON for 0.5 sec each time it is pulsed.

4 a) Draw the internal circuit diagram of a 555 timer IC and explain how does it functions as astable multivibrator.
b) Define the terms 'Lock range' 'Capture range' and 'Pull in time' pertaining to PLL. Derive the relationship between lock range and capture range through a mathematical expression.

5 a) Design a second order Butterworth low-pass filter having upper cut-off frequency 2.5 KHz .
b) Draw the schematic block diagram of dual-slope A/D converter and explain its operation. Derive expression for its o / p voltage ' V_{0} '.

6 a) Design a BCD-to-excess-3 code converter with a BCD-to-decimal decoder and OR gates.
b) Draw the logic diagram of a 4-bit ALU and explain.

7 a) Design a modulo- 16 synchronous binary counter using J-K flip-flops.
b) Design a 8 -bit parallel-in and serial-out shift register? Explain the operation of the above shift register with the help of timing waveforms?

8 a) Discuss in detail ROM access mechanism with the help of timing waveforms?
b) Explain the internal structure of $64 \mathrm{~K} \times 1$ DRAM. With the help of timing waveforms discuss DRAM access.

Code No: R31026

R10

Set No. 4

III B.Tech I Semester Supplementary Examinations, May/June - 2015

LINEAR \& DIGITAL IC APPLICATIONS
 (Electrical and Electronics Engineering)

Time: $\mathbf{3}$ hours

Answer any FIVE Questions

All Questions carry equal marks

1 a) Draw and explain the internal block schematic of an operational amplifier.
b) Explain different methods to increase the input resistance of an op-amp.

2 a) Describe non ideal dc characteristics which add error components to the dc output voltage of an op-amp.
b) Explain Pole-zero compensation technique for an op-amp and give its comparison with other compensation techniques.

3 a) Explain the operation of an op-amp based monostable multivibrator.
b) Sketch\& explain the circuit operation of \log and antilog amplifiers. Calculate output voltages for a given input and show how temperature dependence is minimized.

4 a) Explain the operation of Schmitt trigger using 555 timer with its circuit diagram.
b) Give the block diagram of NE 565 PLL and explain the role of each block. Explain how PLL is used as FM demodulator?

5 a) Explain the operation of an all pass filfer with its circuit diagram. Also determine the phase shift Φ between the input and output at $\mathrm{f}=2 \mathrm{KHz}$.
To obtain a positive phase shift ' Φ ' what modifications are necessary in the circuit?
b) Draw circuit diagram and explain the 4-bit weighted resistor type D/A converter in detail. What are the limitation's of weighted resistor type D/A converter?

6 a) Distinguish between encoder and a decoder.
b) Draw the circuit of a 3 to 8 decoder and explain its operation. How this can be used as a [6] DEMUX.
c) Design a full-subtractor using 3:8 decoders.

7 a) Design a modulo - 16 synchronous binary counter using T- flip flops.
b) Design Johnson counter with ten timing signals.

8 a) What is a PROM? What are the advantages and disadvantages of using a PROM as a PLD?
b) Explain with suitable diagrams, the structure of a DRAM cell.

