I B. Tech I Semester Regular Examinations Dec. - 2016
 MATHEMATICS-II
 (Mathematical Methods)
 (Com. to CSE, IT, Agri Engg.)

Time: $\mathbf{3}$ hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Four Questions should be answered from Part-B

PART A

1. a) Find real root of the equation $3 x=e^{x}$ by using Bisection method up to 3 approximations.
b) Show that $e^{x}\left(u_{0}+x \Delta u_{0}+\frac{x^{2}}{2!} \Delta^{2} u_{0}+\ldots\right)=u_{0}+u_{1} x+u_{2} \frac{x^{2}}{2!}+\ldots$
c) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using Trapezoidal rule.
d) Explain about Dirichlet's conditions for a Fourier expansion.
e) The temperatures at one end of a bar $O A$ of 50 cm length with insulated sides are kept at $0^{\circ} \mathrm{C}$ at O and $100^{\circ} \mathrm{C}$ at A until steady state conditions prevail. Find steady state temperature.
f) If $F(p)$ is the complex Fourier transform of $f(x)$ then prove that

$$
F\{f(a x)\}=\frac{1}{a} F\left(\frac{p}{a}\right), a>0 .
$$

g) Using Newton-Raphson method find square root of a number.

$\underline{\text { PART B }}$

2. a) Solve $x^{3}=2 x+5$ for a positive root by regula-falsi method.
b) Solve the system of equations by Newton Raphson method $3 y x^{2}-10 x+7=0 \quad$ and $y^{2}-5 y+4=0$.
(7M+7M)
3. a) Fit a interpolating polynomial in x for the following data

x	1	4	6	8	10
y	1	7	9	12	21

b) Using Lagrange's formula fit a polynomial to the data

x	0	2	5	9
$f(x)$	1	12	15	33

4. a) Evaluate $\int_{0}^{2} \frac{d x}{x^{3}+x+1}$ by using Simpson's $1 / 3^{\text {rd }}$ rule with $\mathrm{h}=0.25$.
b) Evaluate $y(0.8)$ using Runge Kutta method given $y^{\prime}=(x+y)^{1 / 2}, y(0.4)=0.41$
5. a) Find the Fourier series of $x \cos x$ for $0<x<2 \pi$.
b) Find half range Fourier sine series of $f(x)=\pi-x$ in $[0, \pi]$.
6. A tightly stretched flexible string has its ends fixed at $x=0$ and $x=10$. At time $t=0$, the string is given a shape defined by $f(x)=k x(10-x)$, where k is a constant and then released. Find the displacement of any point x of the string at any time.
7. a) Find the Fourier transform of $\frac{1}{\sqrt{|\mathrm{x}|}}$.
b) Find the inverse Fourier transform of $f(x)$ of $F_{s}(p)=\frac{p}{1+p^{2}}$

Subject Code: R161109/R16

I B. Tech I Semester Regular Examinations Dec. - 2016
 MATHEMATICS-II
 (Mathematical Methods)
 (Com. to CSE, IT, Agri Engg.)

Time: $\mathbf{3}$ hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Four Questions should be answered from Part-B

PART A

1. a) Find positive root of the equation $x^{3}-2 x-5=0$ using Regula-Falsi method. Carry out two approximations.
b) Find the missing term in the following table

X	0	1	2	3	4
Y	1	3	9	-	81

c) The table below shows the temperature $f(t)$ as-a function of time:

t	1	2	3	4	5	6	7
$f(t)$	81	75	80	83	78	70	60

Using Simpson's $\frac{1}{3}$ rd rule, evaluate $\int_{1} f(t) d t$.
d) Expand the function $f(x)=x^{3}$ as a Fourier series in $-\pi \leq x \leq \pi$.
e) Write One-Dimensional wave equation with initial and Boundary conditions.
f) If $F_{s}(p)$ and $F_{c}(p)$ are the Fourier sine and cosine transforms of $f(x)$ respectively, then

$$
\text { prove } F_{s}[f(x) \cos a x]=\frac{1}{2}\left[F_{s}(p+a)+F_{s}(p-a)\right] .
$$

g) Evaluate (i) $\Delta^{2} e^{2 x+3}$ (ii) $\Delta^{2} \cos 2 x$.

PART B

2. a) Using Regula-falsi method, find the real root of $2 x-\log x=6$ correct to three decimal places.
b) Solve the system of equations by Newton Raphson method $x^{2}+y^{2}-1=0$ and

$$
y-x^{2}=0 .
$$

Subject Code: R161109/R16

Set No-2
3. a) Fit a interpolating polynomial in x for the following data

x	0	1	2	3	4
y	-3	3	4	27	57

b) Find Interpolating polynomial by Lagrange's method and hence find $f(2)$ for the following data

x	0	1	3	4
$\mathrm{f}(\mathrm{x})$	-12	0	6	12

(7M+7M)
4. a) Evaluate $\int_{0}^{0.6} e^{-x^{2}} d x$ by using Simpson's $1 / 3^{\text {rd }}$ rule with $\mathrm{h}=0.1$.
b) Find $y(74)$ given that $y(50)=201, y(60)=225, y(70)=248$ and $y(80)=274$. Using Newton's difference formula.
5. a) Expand $\cos \pi x$ in $(0,1)$ as Fourier sine series.
b) Obtain the Fourier \sin series of $f(x)=e^{-x}$ in the interval $0<x<2 \pi$.
(7M+7M)
6. The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and 80° until steady states prevail. The temperatures of the ends are change at $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature distribution in the rod at time t.
7. a) Find the Fourier sine and cosine transform of $f(x)=\frac{1}{1+x^{2}}$.
b) Find the inverse Fourier cosine transform of $F_{c}(p)=p^{n} e^{-a p}$.

Subject Code: R161109/R16

I B. Tech I Semester Regular Examinations Dec. - 2016
 MATHEMATICS-II
 (Mathematical Methods)
 (Com. to CSE, IT, Agri Engg.)

Time: $\mathbf{3}$ hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Four Questions should be answered from Part-B

PART A

1. a) Using Newton-Raphson method find reciprocal of 18 .
b) The function $y=\sin x$ is tabulated below

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$y=\sin x$	0	0.70711	1.0

Using Lagrange's interpolation formula, find the value of $\sin \left(\frac{\pi}{6}\right)$.
c) Solve numerically using Euler's method $y^{\prime}=y^{2}+x, y(0)=1$. Find $y(0.1)$ and $y(0.2)$.
d) Express $f(x)=x$ as a Half range sine series in $0<x<2$.
e) Solve $u_{x}-4 u_{y}=0, u(0, y)=8 e^{-3 y}$ by the method of separation of variables.
f) Find finite Fourier cosine transform of $f(x)=x, 0<x<4$.
g) Using Euler's method find an approximate value of y corresponding to $x=0.4$ given that

$$
\frac{d y}{d x}=x+y \text { and } y=1 \text { at } x=0 .
$$

PART B

2. a) Find a real root of the equation $x^{3}-4 x-9=0$ using False position method correct to three decimal places.
b) Solve the system of equations by Newton Raphson method $3 y x^{2}-10 x+7=0 \quad$ and $y^{2}-5 y+4=0$.
(7M+7M)

Subject Code: R161109/R16
Set No-3
3. a) From the following table of half yearly premium for policies at different ages, estimate the premium for policies at the age of 63 .

Age x	45	50	55	60	65
Premium y	114.84	96.16	83.32	74.48	68.48

b) Apply Lagrange's formula to find $f(5)$ given that $f(1)=2, f(2)=4, f(4)=16$ and $f(7)=128$.
(7M+7M)
4. a) Evaluate $\int_{0}^{6} \frac{e^{x} d x}{x+1}$ by using Simpson's $1 / 3^{\text {rd }}$ rule with $\mathrm{h}=1$.
b) Evaluate $y(0.1)$ and $y(0.2)$ using Runge Kutta method given $\mathrm{y}^{1}=\mathrm{xy}+\mathrm{y}^{2}, y(0)=1$.
($7 \mathrm{M}+7 \mathrm{M}$)
5. a) Find the Fourier series of the function $f(x)=|\sin x|$ in $[-1,1]$.
b) Obtain the Fourier cosine series of $f(x)=e^{-x}$ in the interval $0<x<2 \pi$.
(7M+7M)
6. The ends A and B of a rod of length 20 cm have the temperatures at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady state conditions prevails. The temperature of the ends is changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature distribution in the rod at time t.
7. a) Find Fourier transform of $\mathrm{f}(\mathrm{x})$ defined by $f(x)=e^{-x^{2} / 2},-\infty<x<\infty$.
b) Find the inverse Fourier cosine transform of $F_{c}(p)=\frac{\sin a p}{p}$.

I B. Tech I Semester Regular Examinations Dec. - 2016
 MATHEMATICS-II
 (Mathematical Methods)
 (Com. to CSE, IT, Agri Engg.)

Time: $\mathbf{3}$ hours
Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Four Questions should be answered from Part-B

PART A

1. a) By the fixed point iteration process, find the root correct to two decimal places of the equation $x=\cos x$ near $x=\frac{\pi}{4}$.
b) Prove that $\mu^{2}=1+\frac{\delta^{2}}{4}$
c) Write merits and demerits of Runge-Kutta method.
d) Find Fourier series for the function $f(x)=|x|,-\pi<x<\pi$.
e) Solve $4 u_{x}+u_{y}=0$ and $u(0, y)=e^{-5 y}$ by the method of separation of variables.
f) Find finite Fourier sine transform of $f(x)=x, 0<x<\pi$.
g) Write the formula for half range cosine series expansion of $\mathrm{f}(\mathrm{x})$ in $(0, l)$.

PART B

2. a) Using regula-falsi method, find the real root of $2 x-\log x=6$ correct to three decimal places.
b) Solve the system of equations by Newton Raphson method $3 y x^{2}-10 x+7=0 \quad$ and $y^{2}-5 y+4=0$.

Subject Code: R161109/R16

3. a) Using Lagrange's Interpolation formula find the value of $y(10)$ from the following table

x	5	6	9	11
$y(x)$	12	13	14	16

b) Fit a interpolating polynomial in x for the following data

x	0	1	2	3	4
y	3	5	6	9	17

4. a) Evaluate $\int_{1}^{7} \frac{e^{x} d x}{x+1}$ by using Simpson's $1 / 3^{\text {rd }}$ rule with $\mathrm{h}=1$.
b) Using Runge-Kutta fourth order formula, find $y(0.2)$ for the equation $y^{1}=\frac{y-x}{y+x} y(0)=1$ taking $\mathrm{h}=0.1$.
5. a) Find the Fourier series of the function $f(x)=e^{x}$ in $[0,2]$.
b) Obtain the Fourier sine series of $f(x)=x \sin x$ in the interval $0<x<\pi$.
6. A tightly stretched flexible string has its ends fixed at $x=0$ and $x=10$. At time $t=0$, the string is given a shape defined by $f(x)=k x(10-x)$, where k is a constant and then released. Find the displacement of any point x of the string at any time.
7. a) Find Fourier cosine transform of $f(x)=\frac{e^{-a x}}{x}$
b) Find the inverse Fourier cosine transform of $F_{c}(p)=p^{n} e^{-a p}$.
