

www.FirstRanker.com

Subject Code: R161110/R16

Set No - 1

Max. Marks: 70

I B. Tech I Semester Regular Examinations Dec. - 2016 **MATHEMATICS-II** (Numerical Methods and Complex Variables) (Com. to ECE, EIE, E.Com.E.)

Time: 3 hours

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Four Questions should be answered from Part-B ****

PART-A

- 1. a) What is transcendental equation? Given an example.
 - b) What is the difference between interpolation and extrapolation?
 - c) Find y (0.1) by Taylor's series method for $y^{l} = y x$, y(0) = 1
 - d) Show that the function $e^{x}(\cos y + i \sin y)$ is holomorphic
 - e) State the Cauchy's theorem.
 - f) Evaluate $\int_{0}^{1+i} (x^2 iy) dz$ along the path y = x

g) Find the Pole and residue of $f(z) = \frac{e^{z}}{(z-1)^2}$

[2+2+2+2+2+2+2]

- PART-B 2. a) Find the Real root of the equation $\tan x = x$ using Bisection method. b) Find the Real root of the equation $x + \log_{10} x - 2 = 0$ using false position method. [7+7]
- 3. a) Estimate the minimum weight of bib taps when bore is 20 mm using the following table

Bore(mm)	1	8	10	15	25	32	40	50
Weight of b	oib	0.25	0.30	0.40	1.25	1.70	2.15	3.65
taps in kg	5							

b) Determine the value of f(x) at x = 25 for the following data

[7+7]

X	20	24	28	32
y=f(x)	24	32	35	40

4. a) Evaluate $\int_{0}^{\frac{\pi}{2}} e^{\sin x} dx$ by (i) Trapezoidal rule (ii) Simpson's 1/3rd Rule [7+7]

b) Find y (0.1) for the D.E $\frac{dy}{dx} = xy^2$, y(0) = 1 using RK method of fourth order

www.FirstRanker.com

Set No - 1

Subject Code: R161110/R16

- 5. a) Find the Analytic function whose real part is $u(x, y) = \frac{\sin 2x}{\cosh 2y + \cos 2x}$ b) Show that the function $f(z) = z\overline{z}$ is differentiable but not analytic at origin. [7+7]
- 6. a) Using Cauchy's integral formula, evaluate $\int_{c} \frac{\cosh \pi z}{z(z^2+1)} dz$, where c is |z| = 2 [7+7]
 - b) Express $f(z) = \frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of (z-1)
- 7. a) Evaluate $\int_{0}^{\infty} \frac{\cos x}{(1+x^{2})^{2}} dx$ b) Evaluate $\int_{0}^{\infty} \frac{e^{z}}{(z^{2}+\pi^{2})^{2}} dz$

Where C is |z| = 4 by using residue theorem

[7+7]

		<	con
	00	rte'	
Ċ	rsite		
NNN'			

www.FirstRanker.com

Subject Code: R161110/R16

Set No - 2

Max. Marks: 70

I B. Tech I Semester Regular Examinations Dec. - 2016 **MATHEMATICS-II** (Numerical Methods and Complex Variables) (Com. to ECE, EIE, E.Com.E.)

Time: 3 hours

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Four Questions should be answered from Part-B *****

PART-A

- 1. a) What is Algebraic equation? Given an example.
 - b) Prove that $\nabla = 1 E^{-1}$
 - c) Explain single step method with simple example?
 - d) Determine whether the function $2xy + i(x^2 y^2)$ is analytic.
 - e) Evaluate $\int_{0}^{1+i} (x^2 iy) dz$ along the path $y = x^2$
 - f) Obtain Taylor's series for $f(z) = e^z$ about z = 1
 - g) Find the Pole and residue of $f(z) = \frac{1}{(z^2 4)}$

[2+2+2+2+2+2+2]

PART-B

www.FirstR 2. a) Find the Real root of the equation $x^2 - x - 4 = 0$ using iteration method [7+7]b) Find the Real root of the equation $e^{2x} - e^x - 2 = 0$ using Newton Raphson method

Set No - 2

Subject Code: R161110/R16

3. a) The viscosity of an oil is experimentally measured at different temperatures as shown in the following table

Temp in ⁰ C	110	130	160	190
Viscosity	10.8	8.1	5.5	4.8

Find the Viscosity of the oil at the Temperature of 140 0 C

b) Determine the value of f(x) at x = 10 for the following data [7+7]

Х	2	5	9	11
y=f(x)	94.8	87.9	81.3	75.1

1.

4. a) Evaluate $\int_{0}^{1} \log x \cdot \cos x \, dx$ by (i) Trapezoidal rule (ii) Simpson's $3/8^{\text{th}}$ Rule [7+7]

b) Find y (0.1) for the D.E $\frac{dy}{dx} = x^2 y - 1$, y(0) = 1 using Taylor's series method

5. a) Define analytic function and Verify the whether f(z) = x³(1+i)-y³(1-i)</sup>/x²+y²}, (z ≠ 0) and f(0) = 0 , is analytic [7-b) Define Harmonic function and verify whether u(x, y) = e^{2x}(xcos2y - ysin2y) is [7+7]

harmonic and find its harmonic conjugate.

6. a) Evaluate
$$\oint \left[\frac{e^z}{z^3} + \frac{z^4}{(z+i)^2}\right] dz$$
, where $c: |z| = 2$ [7+7]

b) Expand $f(z) = \frac{z+3}{z(z^2-z-2)}$ in power series where (i) |z| < 1 (ii) 1 < |z| < 2 (iii) |z| > 2

- 7. a) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5 4\sin\theta}$ [7+7]
 - b) Evaluate $\int_{c} \frac{z \cos z}{\left(z \frac{\pi}{2}\right)^3} dz$ where C is the Region bounded by |z 1| = 1 using Residue theorem

2 of 2

www.FirstRanker.com

www.FirstRanker.com

Subject Code: R161110/R16

Set No - 3

I B. Tech I Semester Regular Examinations Dec. - 2016 MATHEMATICS-II (Numerical Methods and Complex Variables) (Com. to ECE, EIE, E.Com.E.)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, **Four** Questions should be answered from **Part-B** *****

PART-A

- 1. a) what is an iterative process, why should we apply iterative technique
 - b) Define Newton forward interpolation formula
 - c) When do you use numerical integration? Give an example
 - d) Find the analytic function whose real part is $\frac{x}{x^2 + y^2}$
 - e) Evaluate $\int_{0}^{1+i} (x^2 + iy) dz$ along the path y = x
 - f) Obtain Taylor's series for $f(z) = 1/z^2$ about z = 1
 - g) Find the Singularity of the function $f(z) = e^{1/z}$

[2+2+2+2+2+2+2]

PART-B

- a) Find the Real root of the equation 2x³-3x-4=0 using Newton Raphson method
 b) Find the Real root of the equation 4sin x = e^x using false position method [7+7]
- 3. a) Determine the value of f(x) at x = 225 form the following data [7+7]

X	50	100	150	200	250
$\mathbf{y} = \mathbf{f}(\mathbf{x})$	5	5.7	7.7	8.9	10.7

b) Calculate f(3) from the following table

Х	0	1	2	4	5	6
Y=f(x)	1	14	15	5	6	19

www.FirstRanker.com

Subject Code: R161110/R16

π

Set No - 3

4. a) Evaluate
$$\int_{0}^{\overline{2}} \frac{\cos x}{1+x} dx$$
 by (i) Simpson's 3/8th Rule (ii) Simpson's 1/3rd Rule [7+7]

b) Find y (0.1) for the D.E $\frac{dy}{dx} = x + y + xy$, y(0) = 1 using Modified Euler's method

5. a) Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) log \left| f'(z) \right| = 0$, where f(z) is analytic function. [7+7]

b) If f (z) = u + iv is analytic and
$$v = \frac{2 \sin x \sin y}{\cos 2x + \cosh 2y}$$
, find u.

6. a) Evaluate $\int_{c} \frac{ze^{2z}}{(z-2)^3} dz$ where c is the circle with radius 3 by Cauchy integral formula

b) Obtain Laurent's expansion for $f(z) = \frac{1}{(z+2)(z+1)}$ in 1 < |z| < 2 [7+7]

7. a) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{3 - 2\sin\theta}$$
 using residue theorem
b) Find the Residue of $\frac{1 + e^{z}}{z\cos z + \sin z}$ at $z = 0$ [7+7]

2 of 2

www.FirstRanker.com

www.FirstRanker.com

Subject Code: R161110/R16

Set No - 4

I B. Tech I Semester Regular Examinations Dec. - 2016 MATHEMATICS-II (Numerical Methods and Complex Variables) (Com. to ECE, EIE, E.Com.E.)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, **Four** Questions should be answered from **Part-B** *****

PART-A

- 1. a) What are possible ways of finding the roots of nonlinear equation
 - b) What are the applications of interpolation?
 - c) Write the merits and demerits of Euler's method?
 - d) Prove that an analytic function with constant imaginary part is constant.
 - e) Evaluate $\int_{0}^{1+i} (x^2 + iy) dz$ along the path $y = x^2$
 - f) Obtain Taylor's series for f(z) = 1/z about z = 1/z
 - g) Define Removable singularity and give an example

[2+2+2+2+2+2+2]

- b) Find the Real root of the equation $e^x 4x^2 = 0$ using Bisection method
- 3. a) Determine the value of f(x) at x = 1.6 form the following data [7+7]

Х	1	1.4	1.8	2.2
y=f(x)	3.49	4.82	5.96	6.5

b) Using Lagrange's Interpolation, find f(12) given that

X	3	7	9	13
У	5	12	13	21

www.FirstRanker.com

Subject Code: R161110/R16

4. a) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin x \log(\sin x) dx$ by (i) Trapezoidal rule (ii) Simpson's $1/3^{rd}$ Rule [7+7]

b) Find y (0.1) for the D.E $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, y(0) = 1 using Picard's method

5. a) Show that for the function $f(z) = \begin{cases} \frac{z^5}{|z|^4}, z \neq 0\\ 0, z = 0 \end{cases}$ Cauchy- Riemann equation are satisfied

at z = 0, but f(z) is not differentiable at 0.

- b) Show that the function $f(x, y) = x^3y xy^3 + xy + x + y$ can be the imaginary part of an analytic function of f(z) also find the real part of the complex function
- - [7+7]
- 6. a) Evaluate $\int_{c} \frac{ze^{2z}}{(z \pi i)^3} dz$ where c is the circle with radius 4 by Cauchy integral formula b) Obtain Laurent's expansion for $f(z) = \frac{1}{(z+2)^2(z+1)}$ in |z| > 2 [7+7 7. a) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^4+1)}$ b) Find the residue of $f(z) = \frac{z^3}{(z-2)(z-3)(z-1)^4}$ at z = 1 [7+7 [7+7]

www.FirstRanker.com

Set No - 4

[7+7]