1

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32032 (R13)

List various output devices used in computers.

SET - 1

[3M]

III B. Tech II Semester Regular Examinations, April - 2016 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)

Time: 3 hours Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

-			[01.1]			
	b)	Derive the transformation matrix for rotation about X&Z axis.	[4M]			
	c)	Explain about window to viewport and viewport to window transformations.	[3M]			
	d)	What is a closed and open curve?	[4M]			
	e)	Explain about visible surface detection.	[4M]			
	f)	Explain about backface detection.	[4M]			
	PART -B					
2	a)	Explain the functioning of a Plasma display system.	[8M]			
	b)	Explain various hardcopy output devices.	[8M]			
3		Explain flood fill algorithm with an example showing stack position at each step.	[16M]			
4		Demonstrate Sutherland-Hodgeman polygon clipping algorithm with an example.	[16M]			
5		Derive the blending functions for a Bezier surface 3x3.	[16M]			
6		Derive the transformation matrix to reflect an object about an arbitrarily selected plane.	[16M]			
7		Write short notes on				
	a)	Animation specification involving accelerations.	[5M]			
	b)	Motion specifications in animation.	[5M]			
	c)	Homogeneous coordinates.	[6M]			

Code No: RT32032 **SET - 2 R13**

III B. Tech II Semester Regular Examinations, April - 2016 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)

Time: 3 hours Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

1	a)	Explain the difference between random scan and raster scan devices.	[3M]
	b)	Derive the transformation matrix for rotation about X&Y axis.	[4M]
	c)	Explain the cohen-sutherland clipping algorithm.	[4M]
	d)	Explain about wireframe modeling.	[4M]
	e)	Explain the need for concatenation of matrices.	[3M]
	f)	Discuss about motion specification.	[4M]
		PART -B	
2		Explain various input and output devices.	[16M]
3		Prove that a uniform scaling $(S_x = S_y)$ and a rotation form a commutative pair of operations but that, in general, scaling and rotation are not commutative operations.	[16M]
4		Compare the number of arithmetic operations performed in the Cohen-Sutherland and the Cyrus-Beck line-clipping algorithms for two different line orientations relative to a clipping window.	[16M]
5		Determine the blending functions for uniform, periodic B-spline curves of degree 3.	[16M]
6		Write the depth buffer algorithm and demonstrate with an example.	[16M]
7		Write short notes on	
	a)	Key frame systems.	[5M]
	b)	General computer animation functions.	[5M]
	c)	Parallel and perspective projections.	[6M]

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32032 **SET - 3 R13**

III B. Tech II Semester Regular Examinations, April - 2016 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)

Time: 3 hours Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

1	a)	Explain the functioning of CRT monitor.	[4M]
	b)	Derive the transformation matrix for rotation about Y&Z axis.	[4M]
	c)	Explain the liang barsky algorithm.	[4M]
	d)	Write the shortcomings of Bezier curves.	[3M]
	e)	Derive the relation for rotation about XY plane, YZ plane and XZ plane.	[4M]
	f)	Explain about keyframe system.	[3M]
		PART -B	
2		Explain in detail about any four input devices.	[16M]
3		Show that transformation matrix for a reflection about the line $y = x$, is equivalent to a reflection relative to the x axis followed by 2 counterclockwise rotation of 90° .	[16M]
4	a)	Derive the window-to-viewport transformation equations by first scaling the window to the SIZE of the viewport and then translating the scaled window to the viewport position.	[16M]
5		Derive blending functions for a B-spline surface of degree 3x3.	[16M]
6		Derive the transformation matrix for scaling an object by scaling factor S in a direction defined by the directional angles α , β , γ .	[16M]
7		Write short notes:	
	a)	Generation of in-betweens key frames using linear interpolation	[5M]
	b)	Raster animation	[5M]
	c)	Back face detection.	[6M]

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32032 (R13) (SET - 4)

III B. Tech II Semester Regular Examinations, April - 2016 INTERACTIVE COMPUTER GRAPHICS

(Mechanical Engineering)

Time: 3 hours Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in Part-A is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

1	a)	Explain various input devices used.	[4M]
	b)	Explain DDA algorithm.	[4M]
	c)	Explain about viewing function.	[4M]
	d)	Explain about CSG modeling.	[3M]
	e)	Explain about Z buffer algorithm.	[4M]
	f)	Explain about animation sequence.	[3M]
		PART -B	
2		Explain the functioning of any two monitors with applications.	[16M]
3		Show that transformation matrix, for a reflection about the line $y = -x$, is equivalent to a reflection relative to the y axis followed by a counterclockwise rotation of 90° .	[16M]
4		Carefully discuss the rationale behind the various tests and methods for calculating the intersection parameters u_1 and u_2 in the Cyrus-Beck line-cllpping algorithm.	[16M]
5		Explain about any two shading algorithms in detail.	[16M]
6		Write scan line algorithm for visible surface detection and explain with an example.	[16M]
7		Write short notes on	
	a)	Animation specification implementing the acceleration-deceleration calculation.	[5M]
	b)	Computer animation languages.	[5M]
	c)	3-D clipping.	[6M]
		distribution.	