

www.FirstRanker.com

www.FirstRanker.com

Code No: R13107

R13

SET - 1

I B. Tech I Semester Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-II (MM)

(Com. to ECE, EEE, EIE, Bio-Tech, E Com E, Agri E)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the question in **Part-A**
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

1. a) Evaluate $1/\sqrt{12}$ using Newton Raphson method. (4M)

b) Prove that
$$1 + \mu^2 \delta^2 = \left(1 + \frac{1}{2} \delta^2\right)^2$$
 (3M)

- c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = 2x^2 + \sin y$, y(0) = 1 (4M)
- d) Find a_0 , a_n for $f(x) = \frac{x}{c}$ in $[0, 2\pi]$. (4M)
- e) State and prove change of scale property in Fourier transform. (4M)
- f) Find Z(n). (3M)

PART -B

- 2. a) Find the four approximations of $xe^x = 1$ by False position method. (8M)
 - b) Find the four approximations of $x \log_{10} x = 2$ by Bisection method. (8M)
- 3. a) Given that $\sin 45^{\circ} = 0.7077$, $\sin 50^{\circ} = 0.766$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.866$ find (8M) $\sin 52^{\circ}$ using Newton's forward difference formula.
 - b) Find the unique polynomial p(x) of degree 2 or less such that p(1)=1, p(3)=27, (8M) p(4)=64 using Lagrange's interpolation formula.
- 4. a) Evaluate y (0.1), y (0.2) &y (0.3) using Picard's method given that $Y^1 = y^2 x^2$, y (0) = 1. (8M)
 - b) By RK method find y(0.2),y(0.4) given that $\frac{dy}{dx} = 2x + y^2$, y(0) = 1 (8M)
- 5. a) Find the half-range cosine series for the function f(x) = x in the range $0 < x < \pi$. (8M)

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

b) Find the Fourier series of $f(x) = x-x^2$ in 0 < x < 3. (8M)

1 of 2

www.FirstRanker.com

www.FirstRanker.com

Code No: R13107

R13

SET - 1

6. a) Using Fourier integral show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^{\infty} \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)} d\lambda$, a, b > 0 (8M)

b) Find finite Fourier cosine transform of f(x) = x - a for $0 < x < \pi$. (8M)

7. a) Prove that if Z(f(n)) = F(z), then $Z[f(n-k)] = z^{-k} F(z)$. (8M)

b) Solve the difference equation $y_{n+2} - 7y_{n+1} - 8y_n = 2^n$, $y_0 = y_1 = 0$ using Z-Transforms. (8M)

Man Files Ranker Colf