I B. Tech I Semester Supplementary Examinations, Nov/Dec - 2017
ENGINEERING MECHANICS
(Com to CE,ME,CSE,PCE,IT,Chem E, Aero E,AME,Min E, PE, Metal E, Textile Engg)
Time: 3 hours

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any THREE Questions from Part-B

PART -A

1. a) State and prove the Lami's theorem with help of neat sketch.
b) State the principle of super position.
c) State Pappus-Guldinus theorem I.
d) Define the terms:
i. Radius of gyration and
ii. Product of inertia.
e) What is general plane motion?
f) What is the importance of impulse momentum equation? Explain in brief.

PART -B

2. a) The forces $20 \mathrm{~N}, 30 \mathrm{~N}, 40 \mathrm{~N}, 50 \mathrm{~N}$ and 60 N areacting at one of the angular points of a regular hexagon, towards the other five angular points, taken in order. Find the magnitude and direction of the resultant-force.
b) A body of weight 500 N is lying on a rough plane inclined at an angle of 25° with the horizontal. It is supported bycan effort (P) parallel to the plane as shown in Figure below. Determine the minimum and maximum values of P , for which the equilibrium can exist, if the angle of friction is 20°.

3. a) A light string $A B C D E$ whose extremity A is fixed, has weights W_{1} and W_{2} attached to it at B and C . It passes round a small smooth peg at D carrying a weight of 300 N at the free end E as shown in Figure below. If in the equilibrium position, BC is horizontal and AB and CD make 150° and 120° with BC , find (i) Tensions in the portion AB, BC and CD of the string and (ii) Magnitudes of W_{1} and W_{2}.

b) Two cylinders P and Q rest in a channel as shown in Figure below. The cylinder P has diameter of 100 mm and weighs 200 N , whereas the cylinder Q has diameter of 180 mm and weighs 500 N . The bottom width of the box is 180 mm , with one side vertical and the other inclined at 60°, determine the pressures at all the four points of contact.

4. a) A body consisting of a cone and hemisphere of radius r fixed on the same base rests on a table, the hemisphere being in contact with the table. Find the greatest height of the cone, so that the combined body may stand upright.
b) A semicircular area is removed from a trapezium as shown in Figure below (dimensions in mm). Determine the centroid of the remaining area (shown shaded).

5. A rectangular hole is made in a triangular section as shown in Figure below. Determine the moment of inertia of the section about $\mathrm{X}-\mathrm{X}$ axis passing through its centre of gravity and the base BC.

SET - 1
6. a) A shot is fired with a velocity if $30 \mathrm{~m} / \mathrm{s}$ from a point 15 metres in front of a vertical wall of 6 metres high. Find the angle of projection, to the horizontal for the shot just to clear the top of the wall.
b) Determine the resulting motion of the body A assuming the pulleys to be smooth and weightless as shown in Figure below. If the system starts from rest, determine the velocity of the body A after 10 seconds.

7. a) An engine of mass 50 tonnes pulls a train of mass 300 tonnes up an incline of 1 in 100. The train starts from rest and moves with a constant acceleration against a total resistance of 50 newtons per tonnes. If the train attains a speed of $36 \mathrm{~km} . \mathrm{p} . \mathrm{h}$. in a distance of 1 kilometre, find power of the engine. Also find tension in the coupling between the engine and train.
b) A truck of mass 15 tonnes travelling at $1.6 \mathrm{~m} / \mathrm{s}$ impacts with a buffer spring, which compresses 1.25 mm per kN . Find the maximum compression of the spring.

