II B. Tech I Semester Supplementary Examinations, Oct/Nov- 2017
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING (Com. to CSE, IT, ECC)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Let p, q, and r be the propositions
p :You have the swine flu.
q :You miss the final examination.
r :You pass the course.
Express each of these propositions as an English sentence.
i) $p \rightarrow q$ ii) $\neg \mathrm{q} \leftrightarrow \mathrm{r}$ iii) $\mathrm{q} \rightarrow \neg \mathrm{r}$ iv) $\mathrm{p} \vee \mathrm{q} \vee \mathrm{rv})(\mathrm{p} \rightarrow \neg \mathrm{r}) \vee(\mathrm{q} \rightarrow \neg \mathrm{r})$
vi) $(\mathrm{p} \wedge \mathrm{q}) \vee(\neg \mathrm{q} \wedge \mathrm{r})$
b) Show that $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow(\mathrm{r} \rightarrow \mathrm{s})$ and $(\mathrm{p} \rightarrow \mathrm{r}) \rightarrow(\mathrm{q} \rightarrow \mathrm{s})$ are not logically
equivalent.
2. a) Use Fermat's little theorem to find $23^{1002} \bmod 41$.
b) Find the greatest common divisor of 414 and 662 using the Euclidean algorithm
c) Use mathematical induction to prove the inequality $\mathrm{n}<2^{\mathrm{n}}$ for all positive integers n .
3. a) In how many ways can the digits $0,1,2,3,4,5,6,7,8$ and 9 be arranged so that 0 and 1 are adjacent and in the order of 01 .
b) Draw the directed graph that represents the relation $\{(a, a),(a, b),(b, c),(c, b)$, (c, d), (d, a), (d, b) \}.
c) Let R_{1} and R_{2} be relations on a set A represented by the matrices below. Find $\mathrm{R}_{2} \circ \mathrm{R}_{1}$.

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

4. a) Whether the graphs G and H in the below figure are isomorphic?

G

H
b) How to determine whether a graph contains Hamiltonian cycle or not, give an example
5. a) How many edges does a spanning tree of K_{n} have
b) Find a spanning tree for the graph shown in below figure.

6. Explain in detail the algebraic systems with two binary operations?
7. a) How many positive integers between 5 and 31 are divisible by both 3 and 4? What are they?
b) Determine the coefficient of $x^{5} y^{10} z^{5} w^{5}$ in $(x-7 y+3 z-w)^{25}$.
8. a) Find the first six terms of the sequence defined by each of these recurrence relations and initial conditions.
i) $a_{n}=n a_{n-1}+a_{n-2}^{2}, a_{0}=-1, a_{1}=0$
ii) $a_{n}=a_{n-1}-a_{n-2}+a_{n-3}, a_{0}=1, a_{1}=1, a_{2}=2$
b) Find the solution to the recurrence relation $a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$ with the initial conditions $\mathrm{a}_{0}=2, \mathrm{a}_{1}=5$, and $\mathrm{a}_{2}=15$.

