

## www.FirstRanker.com

www.FirstRanker.com

Code No: R21054

**R10** 

**SET** - 1

## II B. Tech I Semester Supplementary Examinations, May/June - 2017 DIGITAL LOGIC DESIGN (Com. to CSE\_IT)

|       | (Com. to CSE, IT)                                                                                                                                                                                                                 |           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Time: | 3 hours Max. M                                                                                                                                                                                                                    | Marks: 75 |
|       | Answer any <b>FIVE</b> Questions All Questions carry <b>Equal</b> Marks                                                                                                                                                           |           |
|       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                            |           |
| 1. a) | Convert the following to decimal and then to octal. i) (4234) <sub>16</sub> ii) (125F) <sub>16</sub> iii) (10010011) <sub>2</sub> iv) (10111111) <sub>2</sub>                                                                     | (8M)      |
| b)    | Represent the decimal number 6027 in i) BCD ii) excess-3 Code iii) 2 4 2 1 Code                                                                                                                                                   | (7M)      |
| 2. a) | Draw the logic symbol, expression and truth table for following logic gates:<br>i) AND ii) OR iii) NOT iv) NAND v) NOR vi) EX-OR vii) EX-NOR                                                                                      | (8M)      |
| b)    | Realize the EX-OR Operation with minimum number of NAND gates                                                                                                                                                                     | (4M)      |
| c)    | Simplify the Boolean function xy+x'z+yz to a minimum number of literals.                                                                                                                                                          | (4M)      |
| 3. a) | What do you mean by K-map? Draw 3-variable K-map and define pair, quad and octet.                                                                                                                                                 | (8M)      |
| b)    | Simplify the Boolean function F (w, x, y, z) = $\Sigma$ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) using K-map.                                                                                                                         | (7M)      |
| 4. a) | Design a circuit to eliminate the propagation delay in the parallel adder.                                                                                                                                                        | (7M)      |
| b)    | Design an 8-bit adder using two 74LS283s.                                                                                                                                                                                         | (8M)      |
| 5.    | Implement the following multiple output combinational logic circuit using a 4-line to 16-line decoder. $f_1 = \Sigma m$ (1,2,4,7,8,11,12,13), $f_2 = \Sigma m$ (2,3,9,11) $f_3 = \Sigma m$ (10,12,13,14) $f_4 = \Sigma m$ (2,4,8) | (15M)     |
| 6. a) | Design BCD to Excess-3 converter using PAL.                                                                                                                                                                                       | (8M)      |
| b)    | Implement a full subtractor using ROM.                                                                                                                                                                                            | (7M)      |
| 7. a) | Draw the logic diagram of an SR latch with control input using NAND gates.                                                                                                                                                        | (6M)      |
| b)    | Draw the circuit of master-slave JK flip-flop and explain its operation with the help of truth table.                                                                                                                             | (9M)      |
| 8.    | Draw a block diagram of modulo 10 ripple counter and explain its timing.                                                                                                                                                          | (15M)     |