www.FirstRanker.com

R13

SET - 1

II B. Tech I Semester Supplementary Examinations, Oct/Nov- 2017 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE AND ENGINEERING

 (Com. to CSE, IT, ECC)Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART - A

1. a) Explain free and bound variables of inference theory of predicate caluclus with examples?
b) Explain congruence modulo m ?
c) Explain Antisymmetric , irreflexive properties of a relation with examples?
d) Explain null graph ?
e) Explain left cosets with example?
f) Explain abelian group with example?

PART -B

2. a) Show that $(\exists \mathrm{x})(\mathrm{P}(\mathrm{x}) \Lambda \mathrm{Q}(\mathrm{x})) \Rightarrow(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \Lambda(\exists \mathrm{x}) \mathrm{Q}(\mathrm{x})$
b) Derive the following using CP rule if necessary
$\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}), \mathrm{Q} \rightarrow(\mathrm{R} \rightarrow \mathrm{S}) \Rightarrow \mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{S})$
3. a) Write pseudo code for Euclidian algorithm? find GCD of 330,616 using Euclidian algorithm
b) Prove that by mathematical induction $2^{\mathrm{n}}<\mathrm{n}$! for every positive integer greater than equal to 4 ?
4. a) Show by means of example for the sets $\mathrm{A} \times \mathrm{B} \neq \mathrm{B} \times \mathrm{A}$ and $(\mathrm{A} \times \mathrm{B}) \times \mathrm{C} \neq \mathrm{A} \times($ $\mathrm{B} \times \mathrm{C}$)
b) Let $X=\{1,2,3,4\}$ and $R=\{\langle x, y\rangle|x\rangle y\}$ draw the graph of R and also give its matrix.
5. a) Show that a graph is connected if and only if it has a spanning tree?
b) Explain kruskal's algorithm to find minimal spanning tree of a graph with suitable example?
6. a) Show that the order of each group of a finite group G is a divisor of the order of the group G .
b) Explain multinomial theorem and find binomial coefficient of $x^{9} y^{3}$ in $(3 x+4 y)^{12}$
7. a) Solve the following recurrence relation $a_{n}=5 a_{n-1}+6 a_{n-2}=0, n>=2$ by the generating function method with $a_{0=3}, a_{1=3}$.
b) Explain Generating function and explain various operation on generating (8M) function
