

www.FirstRanker.com

www.FirstRanker.com

SET - 1

Code No: RT21044 **R13**

II B. Tech I Semester Supplementary Examinations, May/June - 2017 SIGNALS AND SYSTEMS

(Com. to ECE, EIE, ECC)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any THREE Questions from Part-B

PART -A			
1.	a)	Obtain the expressions to represent trigonometric Fourier coefficients in terms of exponential Fourier coefficients.	(5M)
	b)	State and prove time shift property of Fourier transform.	(4M)
	c)	Obtain the relationship between Laplace transform and Fourier transform	(4M)
	d)	State Parseval's theorem	(3M)
	e)	Write the differentiation in time property of laplace transform	(3M)
	f)	Write the time reversal property of z transform	(3M)
		PART -B	
2.	a)	Define Fourier transform. Explain the properties of Fourier transform.	(10M)
	b)	Approximate a rectangular pulse of width T, amplitude A which is symmetric about origin using sint, sin2t, sin3t and sin4t.	(6M)
3.	a)	State and prove sampling theorem for band limited signals.	(10M)
	b)	Find the Fourier transform of $x(t) = u(2t)$, where $u(t)$ is the unit step function.	(6M)
4.	a)	Obtain the impulse response of an LTI system defined by $dy(t)/dt + 2y(t) = x(t)$. Also obtain the response of this system when excited by $e^{-2t}u(t)$.	(8M)
	b)	What is an LTI system? Explain the properties involved. Check whether an ideal differentiator is LTI or not.	(8M)
5.	a)	Graphically convolve the signals $x_1(t) = \begin{cases} 1 & for - T \le t \le T \\ 0 & else & where \end{cases}$ and	(12M)
		$x_2(t) = \begin{cases} 1 & for - 2T \le t \le 2T \\ 0 & else & where \end{cases}$	
		0 else where	

b) Present the relation between convolution and correlation. (4M)

6. a) (8M)Define Laplace Transform and explain the properties of Laplace Transform

Find the Laplace transform of $x(t) = -t^2e^{-at}u(-t)$ and indicate its ROC. (8M)

Find the Inverse Z transform of $X(z) = \frac{z+2}{4z^2-2z+3} |Z| < \sqrt{3/4}$ 7. a) (8M)

(8M)b) Find the Z transform of x $[n] = a^{n+1} u[n+1]$

1 of 1