II B. Tech I Semester Supplementary Examinations, May/June - 2017 ELECTRICAL CIRCUIT ANALYSIS - II
 (Electrical and Electronics Engineering)

Time: 3 hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) What do you mean by a balanced three phase voltages.
b) Explain the term active power, reactive power and power factor.
c) Explain the time constant of R-L and R-C circuits.
d) Write the symmetry and reciprocity conditions for transmission parameters and hparameters.
e) Check whether $Z(s)=\frac{(4 s+1)}{(s+2)}$ is a positive real function or not
f) List the properties of Fourier Analysis.

PART -B

2. a) Explain in detail about a balanced Delta -Delta connection and Star - Star connection.
b) A positive sequence, balanced delta connected source supplies a balanced delta connected load. If the impedance per phase of the load is $(18+\mathrm{j} 12) \Omega$ and $\mathrm{I}_{\mathrm{a}}=22.5\left\llcorner 35^{\circ}\right.$, Find $\mathrm{I}_{\mathrm{AB}}, \mathrm{V}_{\mathrm{AB}}$, total active and reactive power.
3. a) Explain how power can be measured in a three phase unbalanced system.
b) A balanced 3- phase, 3-wire $50 \mathrm{~Hz}, 100 \mathrm{~V}$ supply is given to a load consisting of three impedances $(1+\mathrm{j} 1),(1+\mathrm{j} 2),(3+\mathrm{j} 4)$ ohms connected in star. Compute the line and phase voltages ând also currents.
4. a) Obtain the expression for current in an R-L series circuit when it is excited with step voltage.
b) Find the current in a series R - L circuit having the resistance of 2Ω and inductance of 10 H while a dc voltage of 100 V is applied. What is the value of current in the circuit after 5 seconds.
5. Evaluate $\mathrm{V}_{2} / \mathrm{V}_{\mathrm{s}}$ for the circuit shown below

6. A driving point impedance is given by

$$
Z_{L C}(s)=\frac{s\left(s^{2}+4\right)\left(s^{2}+6\right)}{\left(s^{2}+1\right)\left(s^{2}+5\right)}
$$

Obtain the first Cauer form of the network.
7. Find $\mathrm{V}_{0}(\mathrm{t})$ in the circuit shown below for $\mathrm{V}_{\mathrm{i}}(\mathrm{t})=2 \mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})$ using Fourier transform.

