www.FirstRanker.com

R13

SET - 1

II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2017 COMPLEX VARIABLES AND STATISTICAL METHODS
 (Electrical and Electronics Engineering)
 Max. Marks: 70

Time: 3 hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART - A

1. a) If $f(z)=u(x, y)+i v(x, y)$ is analyatic, then prove that u and v satisfies Laplace
equation
b) Evaluate $\int_{(0,0)}^{(1,1)}\left[3 x^{2}+5 y+i\left(x^{2}-y^{2}\right)\right] d z$ along $y^{2}=x$
c) Determine the residue of $\mathrm{z} / \operatorname{cosz}$ at $\mathrm{z}=0$
d) Find the Image of straight line $x=c$ under the transformation $w=4 / z$
e) If X is normally distributed with mean 30 and S.D 6 then find $\mathrm{P}(\mathrm{X}>17)$
f) What is the sample size with 98% confidence that the maximum error is at most 0.25 with S.D is 1.25

PART -B

2. a) If $\mathrm{f}(\mathrm{z})$ is regular then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{1}(z)\right|^{2}$
b) Construct analytic function $f(z)$, whose imaginary part is $(8 \mathrm{M})$ $v(x, y)=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$
3. a) Evaluate $\int_{c} \frac{\cos z d z}{(z-\pi)}$, C:being circle $|z-1|=3$ by Cauchy's Integral formula
b) Obtain Laurent's series expansion of $\frac{1}{\left(z^{2}-4 z+3\right)}$ for $1<|z|<3$
4. a) Evaluate $\int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+1} d x(a>0)$ using residue theorem
b) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} d \theta$ using residue theorem
5. a) Discuss the transformation $w=z+1 / \mathrm{z}$
b) Find the Bilinear transformation that maps $\mathrm{z}(-\mathrm{i}, 0, \mathrm{i})$ onto $\mathrm{w}(-1, \mathrm{i}, 1)$
6. From a population $\{3,6,9,15,17\}$, list of all possible samples of size 3 without (16M) replacement from the population hence calculate
i) Mean of each samples listed by assigning each sample with probability $1 / 10$
ii) Verify $E(\bar{x})=\theta$, where θ is the mean of the population
iii) Find variance of the population
iv) Find the variance of mean of the samples
7. a) The mean life of 100 bulbs is 1560 hrs with S.D of 90 hrs. Test the claim at 5%
level that the mean life time of bulbs is 1580 hrs
b) Test whether the die was fair if it is thrown 120 times and observed the (8 M) frequency as follows at 1% level

Face No	1	2	3	4	5	6
Frequency	10	15	25	25	18	27

