## R13

SET - 1

## II B. Tech I Semester Supplementary Examinations, Oct/Nov- 2017 <br> MECHANICS OF SOLIDS <br> (Com. to ME, AME, AE, MTE)

Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

## PART -A

1. a) Define simple and cantilever beams with help of diagrams
b) Define strength and ductility
c) Derive the relation between load, shear force and bending moment
d) Define point of contra flexure
e) A cantilever beam of length 4 m is subjected to point load of magnitude 20 KN at free end. Calculate slope and deflection at free end of cantilever. Take $\mathrm{E}=210 \mathrm{GPa}, \mathrm{I}=9500 \mathrm{~cm}^{4}$
f) Differentiate between thin and thick cylinders
g) Define buckling

## PART -B

2. a) Derive the relation between Young's môdulus, shear modulus and bulk modulus. (7M)
b) Draw the Mohr's circle for the following state of stress.
$\sigma_{x}=40 \mathrm{MPa}, \quad \sigma_{y}=-15 \mathrm{MPa}$, and $\tau_{x y}=20 \mathrm{MPa}$
Calculate i) Principal stresses ii) Maximum shear stress iii) Planes on which principal stresses are acting iv) Planes on which shear stress is acting v) Calculate normal and shear stress on an oblique plane of $35^{\circ}$
3. Draw the Shear force and bending moment diagram for the loaded beam as (16M) shown in figure.


1 of 2

## R13

4. a) Derive the flexure formula
b) The tension flange of a girder of I section is 240 mmX 40 mm , where as the compression flange is 120 mmX 20 mm . The web is 300 mm deep and 20 mm thick. If the girder is used as a simply supported beam of span 8 m , determine the load per meter run if the allowable stress is 90 MPa in compression and 30 MPa in tension.
5. a) State Mohr's theorems
b) A simply supported beam of span 20 m carries two concentrated loads 4 KN at 8 m
and 10 KN at 12 m from the left side support. Using Macaulay's method
i) Calculate deflection under each load ii) Calculate maximum deflection iii) Calculate slope at both supports.
6. A compound cylinder is made by shrinking a cylinder of external diameter 300 mm and internal diameter of 250 mm over another cylinder of external diameter 250 mm and internal diameter 200 mm . The radial pressure at the junction after shrinking is $8 \mathrm{~N} / \mathrm{mm}^{2}$. Find the final stresses set up across the section, when the compound cylinder is subjected to an internal fluid pressure of $84.5 \mathrm{~N} / \mathrm{mm}^{2}$
7. a) Derive torsion formula
b) Derive an expression for critical buckling load for the case of Hinged-Hinged Column.

$$
2 \text { of } 2
$$

