III B.Tech II Semester Regular/Supplementary Examinations, April - 2017
 GEOTECHNICAL ENGINEERING -I
 (Civil Engineering)

Time: $\mathbf{3}$ hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks
 Note: Ordinary graph sheet is required.

1 a) Draw three phase soil system and establish the relationship:
$\gamma^{\prime}=\frac{(G-1) \gamma_{w}}{1+e}$ where, $\quad \gamma^{\prime}=$ submerged unit of soil,G $=$ Sp.gr. of solids, $\gamma_{\mathrm{w}}=$ unit weight of water, $\mathrm{e}=$ void ratio.
b) A soil has a volume of $1000 \mathrm{~cm}^{3}$ and weight of 17.5 N , the specific gravity of solids is 2.67 . If the dry unit weight of soil is $14.8 \mathrm{kN} / \mathrm{m}^{3}$, determine (i) water content, (ii) void ratio, (iii) porosity, (iv) degree of saturation, (v) saturated unit weight, (vi) submerged unit weight.

2 a) Briefly explain how you determine diameter and cumulative percent finer from Hydrometer analysis.
b) A saturated sample has a volume of $20 \mathrm{~cm}^{3}$ at its liquid limit. Given

Liquid limit, $\mathrm{w}_{1}=42 \%$, shrinkage limit, $\mathrm{w}_{\mathrm{s}}=\mathrm{d} 7 \%, \mathrm{G}=2.74$. Find the minimum volume which the soil can attain?

3 a) Explain the following factors that affect the permeability of soil :
(i) Void ratio (ii) Properties of pore fluid.(iii)adsorbed water
b) Determine the average coefficient of permeability in the horizontal and vertical directions for a deposit consisting of three layers of thickness $4 \mathrm{~m}, 2 \mathrm{~m}$ and 3 m and having coefficient of permeability of $3 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}, 3 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ and 4×10^{-2} $\mathrm{cm} / \mathrm{sec}$ respectively. Assume the layers are isotropic.

4 a) Define 'Quick sand' and derive the formula for critical hydraulic gradient.
b) A deposit of cohesionless soil with a permeability of $3 \times 10^{-2} \mathrm{~cm} / \mathrm{s}$ has a depth of 10 m with an impervious ledge below. A sheet pile wall is driven into this deposit to a depth of 7.5 m . The wall extends above the surface of the soil and a 2.5 m depth of water acts on one side. Sketch the flow net and determine the seepage quantity per metre length of the wall.

5 a) Derive the formula for vertical stress increase due to circular loaded area.
b) The base of a tower consists of a equilateral triangular frame on the corners of which three legs of the tower is supported. The total weight of the tower is 600 kN , which is equally carried by all the three legs. Compute the increase in vertical stress in the soil caused at a point 5 m below one of the legs. Use Boussinesq's theory.

Code No: R32011

R10

Set No. 1

6 a) Explain briefly suitability of compaction equipment for different types of soils in the field.
b) A soil having specific gravity of grains is 2.85 , is subjected to IS compaction test in mould volume of $1 \times 10^{-3} \mathrm{~m}^{3}$. The observations are recorded as follows:

Wt. of wet sample (N)	16.50	17.25	17.35	17.90	17.75
Water content (\%)	19.1	20.5	21.3	22.5	24.0

Plot the water content - dry unit weight curve and obtain MDD \& OMC. Draw zero air voids line also.
7 a) Define and explain the terms, coefficient of compressibility, coefficient of volume change, compression index and degree of consolidation.
b) A clay layer of soft clay 8 m thick is located between two layers of sand. Consolidation test on representative sample of clay gave $\mathrm{C}_{\mathrm{v}}=3 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}$. The expected ultimate settlement of a foundation on the clay layer is 5 cm . How much time is required for 30% of ultimate settlement to occur?
8 a) Briefly explain the following:
(i) critical void ratio and (ii) liquefaction of sands
b) In an unconfined compression test, a sample of sandy clay 8 cm long and 4 cm in diameter fails under a load of 120 N at 10% strain. Compute the shearing resistance taking into account the effect of change in cross-section of the sample.

