

www.FirstRanker.com

www.FirstRanker.com

R10

Set No. 1

Max. Marks: 75

[9M]

III B.Tech II Semester Supplementary Examinations, November - 2017 WATER RESOURCES ENGINEERING-II

(Civil Engineering)

Time: 3 hours

Code No: **R32014**

Answer any FIVE Questions All Questions carry equal marks

- 1 a) A weir on a permeable foundation has a level floor of negligible thickness and is [5M] 10*m* long in the direction of flow. At the two ends of the floor 2.5*m* deep piles are provided. Using Khosla's theory, calculate the uplift pressure at the mid-length of the floor and at quarter points. The effective head of water can be assumed to be 2*m*
 - b) For the weir floor shown in Figure below, check: (i) The safety against piping [10M] failure,(ii) The safety of the floor against uplift pressure at toe of crest wall (point A), and(iii) Draw HGL using Bligh's creep theory.

- 2 a) Discuss the factors affecting selection of type of dam, justifying your answer with [7M] reference to a few special cases.
 - b) A masonry dam 10m high is trapezoidal in section with a top width of 1m and bottom width of 8.25m. The face exposed to water has a batter of 1:10. Calculate various factors of safety and comment on the stability of the dam. Assume

coefficient of friction as 0.75, specific weight of masonry as $2240 \frac{kg}{m^3}$, permissible

shear stress as
$$14 \frac{kg}{cm^2}$$
.

3 a) Write short notes on:

(i) Galleries in gravity dams, (ii) Foundation treatment for gravity dams, and (iii) Structural joints in gravity dams.

b) A 100*m* high concrete gravity dam trapezoidal in cross-section has upstream face [6M] vertical, crest width 6*m*, base width 75*m* and free board equal to 4*m*. Calculate the maximum principle stress at the toe when reservoir is full. Take unit weight of concrete as $23.544 \frac{kN}{m^3}$. Neglect all other forces except hydrostatic water pressure, uplift pressure and self-weight. There is no drainage gallery and no tail water.

www.FirstRanker.com

R10

www.FirstRanker.com

Set No. 1

[5M]

Code No: **R32014**

- 4 a) Discuss various causes of failure of earth dam.
 - b) In order to determine the factor of safety of the d/s slope during steady seepage, the [10M] section of a homogeneous earth dam was drawn to scale of 1cm = 10m; and the following results were obtained on a trip slip circle.

Area of N-diagram = $12.15cm^2$ Area of T-diagram = $6.5cm^2$ Area of U-diagram = $4.02cm^2$ Length of arc = 11.6cm

The dam material has the following properties:

Effective angle of internal friction = 26° Unit cohesion = $0.2 \frac{kg}{cm^2}$ Unit weight of soil = $2 \frac{g}{cm^3}$

Determine the factor of safety of the slope.

- 5 a) A spillway is a safety value of a dam Justify the statement. Also explain its [7M] functional requirements.
 - b) Discuss different causes of failure of an earth dam suggesting suitable preventive [8M] measures.

n,

6 Design a trapezoidal notch fall for the following data. Assume important [15M] missing data. Draw the important views.

Full supply discharge : $20 m^3/sec (US / DS)$

Full supply level : 101 m US / 100 m DS

Full supply depth : 2 m US / 2 m DS

Bed width : 10 *m US* / 10 *m DS*

Bed level : 99 *m US* / 98 *m DS*

Drop : 1 *m*

2 of 3

www.FirstRanker.com

www.FirstRanker.com

	C	ode No: R32014 R10 Set N	o. 1	
7		Design a canal regulator for the following data:	[1	5M]
		Discharge of parent channel $\cdot 120 m^3/sec$	L	
		Discharge in distributor : $30 m^3/sec$		
		FSL of parent channel : 218 m US / 217.80 m DS		
		Bed width of parent channel : 52 m US / 49 m DS		
		Depth of water in parent channel : $2.5 m$ US / $2.5 m$ DS		
		Depth of water in distributor : $1.5 m$		
		Bed width of distributor : $15 m$		
8	a)	FSL of distributor : $217 m$ Design a type-III siphon aqueduct for the data given below. Assume any missing data suitably.	[[7M]
		Discharge of the canal : 60 <i>cumecs</i>		
		Bed width of canal : 20 m		
		Depth of water in canal : 2 m		
		Bed level of canal : 160 m		
		Flood discharge : 320 cumecs		
		High flood level : 161.5 m		
		Bed level of drainage : $158 m$		
	b)	General ground level : 160 <i>m</i> Write short notes on: (i) Aqueduct, (ii) Syphon aqueduct,(iii) Canal siphon, and (iv) Level crossing.	[[8M]

3 of 3