III B.Tech II Semester Supplementary Examinations, November - 2017
 WATER RESOURCES ENGINEERING-II

(Civil Engineering)
Time: $\mathbf{3}$ hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) A weir on a permeable foundation has a level floor of negligible thickness and is 10 m long in the direction of flow. At the two ends of the floor 2.5 m deep piles are provided. Using Khosla's theory, calculate the uplift pressure at the mid-length of the floor and at quarter points. The effective head of water can be assumed to be $2 m$
b) For the weir floor shown in Figure below, check: (i) The safety against piping failure,(ii) The safety of the floor against uplift pressure at toe of crest wall (point A), and(iii) Draw HGL using Bligh's creep theory.

2 a) Discuss the factors affecting selection of type of dam, justifying your answer with reference to a few special cases.
b) A masonry dam 10 m high is trapezoidal in section with a top width of 1 m and bottom width of 8.25 m . The face exposed to water has a batter of $1: 10$. Calculate various factors of safety and comment on the stability of the dam. Assume coefficient of friction as 0.75 , specific weight of masonry as $2240 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, permissible shear stress as $14 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$.
3 a) Write short notes on:
(i) Galleries in gravity dams, (ii) Foundation treatment for gravity dams, and
(iii) Structural joints in gravity dams.
b) A 100 m high concrete gravity dam trapezoidal in cross-section has upstream face vertical, crest width $6 m$, base width $75 m$ and free board equal to $4 m$. Calculate the maximum principle stress at the toe when reservoir is full. Take unit weight of concrete as $23.544 \frac{\mathrm{kN}}{\mathrm{m}^{3}}$. Neglect all other forces except hydrostatic water pressure, uplift pressure and self-weight. There is no drainage gallery and no tail water.

4 a) Discuss various causes of failure of earth dam.
b) In order to determine the factor of safety of the d / s slope during steady seepage, the section of a homogeneous earth dam was drawn to scale of $1 \mathrm{~cm}=10 \mathrm{~m}$; and the following results were obtained on a trip slip circle.

Area of N -diagram $=12.15 \mathrm{~cm}^{2}$
Area of T-diagram $=6.5 \mathrm{~cm}^{2}$
Area of U-diagram $=4.02 \mathrm{~cm}^{2}$
Length of arc $=11.6 \mathrm{~cm}$
The dam material has the following properties:
Effective angle of internal friction $=26^{0}$
Unit cohesion $=0.2 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$
Unit weight of soil $=2 \frac{g}{\mathrm{~cm}^{3}}$
Determine the factor of safety of the slope
5 a) A spillway is a safety valve of a dam - Justify the statement. Also explain its functional requirements.
b) Discuss different causes of failure of an earth dam suggesting suitable preventive measures.
6 Design a trapezoidal notch fall for the following data. Assume important missing data. Draw the important views.

Full supply discharge : $20 \mathrm{~m}^{3} / \mathrm{sec}(U S / D S$)
Full supply level : $101 \mathrm{~m} U S / 100 \mathrm{~m} D S$
Full supply depth : $2 \mathrm{~m} U S / 2 m D S$
Bed width : $10 \mathrm{~m} U S / 10 \mathrm{~m} D S$
Bed level : 99 m US / 98 m DS
Drop : 1 m

Set No. 1

Design a canal regulator for the following data:
Discharge of parent channel : $120 \mathrm{~m}^{3} / \mathrm{sec}$
Discharge in distributor : $30 \mathrm{~m}^{3} / \mathrm{sec}$
FSL of parent channel : $218 m$ US / $217.80 m$ DS
Bed width of parent channel : 52 m US / 49 m DS
Depth of water in parent channel $: \frac{2}{2}$ of 3 m US $/ 2.5 \mathrm{~m}$ DS
Depth of water in distributor : 1.5 m
Bed width of distributor : 15 m
FSL of distributor : 217 m
8 a) Design a type-III siphon aqueduct for the data given below. Assume any missing data suitably.

Discharge of the canal : 60 cumecs

Bed width of canal : 20 m

Depth of water in canal : 2 m

Bed level of canal : 160 m
Flood discharge : 320 cumecs
High flood level : 161.5 m

Bed level of drainage : 158 m

General ground level : 160 m
b) Write short notes on:
(i) Aqueduct, (ii) Syphon aqueduct,(iii) Canal siphon, and (iv) Level crossing.

