Code No: RT32014
R13
SET - 1

III B. Tech II Semester Supplementary Examinations, November - 2017
WATER RESOURCES ENGINEERING-I
(Civil Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Write a note on scope of Hydrology.
b) Write short notes on Infiltration indices.
c) Discuss the effects of climatic factors on the run-off from a drainage basin.
d) Define design flood, standard project flood and probable maximum flood.
e) Distinguish between specific yield and specific capacity of a well.
f) Define Instantaneous Unit hydrograph. How does it differ from Unit hydrograph of finite duration?

PART -B

2 a) Describe various types and forms of precipitation.
b) Thiessen polygons constructed for a network of 10 rain gauges in a river basin yielded Thiessen weights of $0.10,0.16,0.12,0.11,0.09,0.08,0.07,0.11,0.06$ and 0.10 . The rainfalls recorded at these gauges during a cyclonic storm are 135, 115, 160, 140, 208, $150,135,160,170$, and 150 mm respectively. Determine the average depth of rainfall by Thiessen mean and Arithmetic mean methods. Also determine the volume of surface runoff at the basin outlet if 35% of the rainfall is lost as infiltration. Take the area of the basin as $5000 \mathrm{Km}^{2}$ and express your answer in million cubic metres.

3 a) What is infiltration? Explain the different methods of measuring infiltration. How would you use infiltration capacity curve to calculate runoff from a small catchment?
b) The surface runoff from a flood on a drainage basin amounted to 4.5 cm . The area of the basin is $20 \mathrm{~km}^{2}$. The average depth of rainfall on the drainage basin was 15 cm , and the time distribution of the rainfall is given as follows. Calculate the Φ - index for this storm. Assume data wherever necessary.

Hour	$09-10$	$10-11$	$11-12$	$12-13$	$13-14$	$14-15$	Total
Pptn. (mm)	13	19	47	20	31	20	150

4 a) Discuss the applications of flow mass curve and flow duration curve.

Code No: RT32014

SET - 1
b) Table below gives ordinates of 6-hr Unit Hydrograph. Derive ordinates of 3-hr Un Hydrograph for the same catchment?

Time (Hrs)	0	3	6	9	12	15	18	21	24
Ordinates of $6-\mathrm{Hr} \mathrm{UH}\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	0	10	20	30	40	30	20	10	0

5 a) Discuss in detail the various causes and effects of Floods.
b) Observed values of inflow and outflow hydrograph at the end of a reach in a river are given below. Determine the best values of k and x for use in Muskingum method of flood routing.

Time (hr)	0	6	12	18	24	30	36	42	48	54	60	66
Inflow $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	20	80	210	240	215	170	130	90	60	40	28	16
Outflow $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$	20	20	50	150	200	210	185	155	95	85	55	23

6 a) Discuss different types of aquifers.
b) During a recuperation test conducted on an open well in a region, the water level in the well was depressed by 3 m and it was observed to rise by 1.75 m in 75 minutes. What is the specific yield of open well in that region and what could be the yield from a well of 5 m diameter under a depression head of 2.5 m ?
c) Explain the various aquifer parameters,

7 a) How can the linear reservoir storage coefficient K in the Clark's IUH be determined from runoff data?
b) Describe Chow's Hydrological model.
c) What are the uses of rainfall - runoff modeling?

