I B. Tech I Semester Supplementary Examinations, May - 2018 MATHEMATICS-I

(Com. to All branches)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any THREE Questions from Part-B

PART -A

1. a) Find the integrating factor for the non exact differential equation.

$$
\begin{equation*}
x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0 \tag{4M}
\end{equation*}
$$

b) Find the solution of $y^{11}+y=\cos 2 x$.
c) If $L(\cos 2 t)=\frac{s}{s^{2}+4}$ then find $L\left(\int_{0}^{t} \cos 2 t d t\right)$.
d) Find the inverse Laplace transform of $\left(\frac{1}{s(s+a)}\right)$.
e) Formulate the partial differential equation from $\mathrm{z}=(\mathrm{x}+\mathrm{a})(\mathrm{y}+\mathrm{b})$ by eliminating ' a ' and ' b '.
f) Find the solution of the partial differential equation $\mathrm{p}+\mathrm{q}=\mathrm{pq}$.

PART -B

2. a) Solve $\left(x e^{x y}+2 y\right) \frac{d y}{d x}+y e^{x y}=0$.
b) A metal ball is heated to a temperature of $100^{\circ} \mathrm{C}$ and at time $\mathrm{t}=0$ it is placed in water which is maintained at $40^{\circ} \mathrm{C}$. If the temperature of the ball reduces to $60^{\circ} \mathrm{C}$ in 4 minutes, find the time at which the temperature of the ball is $50^{\circ} \mathrm{C}$.
3. a) Solve $\left(D^{3}-3 D^{2}+4\right) y=e^{2 x}+6+80 \operatorname{Cos} 2 x$.
b) Solve $\left(D^{2}-3 D+2\right) y=2 x^{2} \mathrm{e}^{x}$.
4. a) Find $L\left[\int_{0}^{t} \frac{1-e^{-u}}{u} d u\right]$.
b) Solve $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=t^{2} e^{t}$ given that $y=1, y^{\prime}=0, y^{\prime \prime}=-2$ at $\mathrm{t}=0$.
5. a) Determine whether the functions $\mathrm{U}=\frac{x}{y-z}, \mathrm{~V}=\frac{y}{z-x}, \mathrm{~W}=\frac{z}{x-y}$ are dependent. If dependent find the relationship between them.
b) Investigate the maxima and minima, if any, of the function $f(x)=x^{3} y^{2}(1-x-y)$.
6. a) Form the p.d.e by eliminating the arbitrary function f from $x y z=f\left(x^{2}+y^{2}+z^{2}\right)$.
b) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
7. a) Solve PDE $\frac{\partial \mathrm{u}}{\partial \mathrm{x}}-2 \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=\mathrm{u}$ and $\mathrm{u}(x, 0)=3 \cdot \mathrm{e}^{-5 \mathrm{x}}+2 \cdot \mathrm{e}^{-3 \mathrm{x}}$.
b) A tightly stretched string with fixed end points $x=0$ and $x=\mathrm{L}$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi \mathrm{x}}{\mathrm{L}}\right)$. If it is released from rest from this position; find the displacement $\mathrm{y}(\mathrm{x}, \mathrm{t})$.
