www.FirstRanker.com

Code No: R13102

R13

SET - 1

I B. Tech I Semester Supplementary Examinations, May - 2018 MATHEMATICS-I

(Com. to All branches)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any **THREE** Questions from **Part-B**

PART -A

1. a) Find the integrating factor for the non exact differential equation. $x^2ydx - (x^3 + y^3)dy = 0. \tag{4M}$

b) Find the solution of $y^{11}+y=\cos 2x$. (4M)

c) If $L(\cos 2t) = \frac{s}{s^2 + 4}$ then find $L\left(\int_0^t \cos 2t dt\right)$. (4M)

d) Find the inverse Laplace transform of $\left(\frac{1}{s(s+a)}\right)$. (4M)

e) Formulate the partial differential equation from z=(x+a)(y+b) by eliminating 'a' and 'b'. (3M)

f) Find the solution of the partial differential equation p+q = pq. (3M)

PART-B

2. a) Solve $(xe^{xy} + 2y)\frac{dy}{dx} + ye^{xy} = 0.$ (8M)

b) A metal ball is heated to a temperature of 100^{0} C and at time t = 0 it is placed in water which is maintained at 40^{0} C. If the temperature of the ball reduces to 60^{0} C in 4 minutes, find the time at which the temperature of the ball is 50^{0} C.

3. a) Solve $(D^3 - 3D^2 + 4)y = e^{2x} + 6 + 80\cos 2x$. (8M)

b) Solve $(D^2 - 3D + 2)y = 2x^2e^x$. (8M)

4. a) Find $L\left[\int_{0}^{t} \frac{1-e^{-u}}{u} du\right]$. (8M)

b) Solve $y''' - 3y'' + 3y' - y = t^2 e^t$ given that y = 1, y' = 0, y'' = -2 at t = 0. (8M)

5. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. (8M) If dependent find the relationship between them.

b) Investigate the maxima and minima, if any, of the function $f(x) = x^3 y^2 (1 - x - y)$. (8M)

6. a) Form the p.d.e by eliminating the arbitrary function f from $xyz = f(x^2 + y^2 + z^2)$. (8M)

b) Solve $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$. (8M)

7. a) Solve PDE $\frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y} = u$ and $u(x,0) = 3.e^{-5x} + 2.e^{-3x}$. (8M)

b) A tightly stretched string with fixed end points x = 0 and x = L is initially in a (8M) position given by $y = y_0 \sin^3 \left(\frac{\pi x}{L}\right)$. If it is released from rest from this position; find the displacement y(x, t).