

www.FirstRanker.com

www.FirstRanker.com

b) Prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$ c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = \cos xy$, y(0) = 1 d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0,2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. 2. a) Find the four approximations of $xe^x = 1$ by Bisection method. b) Find the four approximations of $xlog_{10}x = 2$ by False position method.	ET - 1
Time: 3 hours Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B PART -A 1. a) Find four approximation of $x = x^4 - 10$ using Iteration method. b) Prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$ c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = \cos xy$, y(0) = 1 d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0,2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. 2. a) Find the four approximations of $xe^x = 1$ by Bisection method. b) Find the four approximations of $xlog_{70}x = 2$ by False position method. c) Find the four approximations of $xlog_{70}x = 2$ by False position method. b) Find the four approximations of $xlog_{70}x = 2$ by False position method. c) Find the four approximations of $xlog_{70}x = 2$ by False position method. c) Find the four approximations of $xlog_{70}x = 2$ by False position method. c) Find the four approximations of $xlog_{70}x = 2$ by False position method. c) Find the four approximations of $xlog_{70}x = 2$ by False position method. c) Find the y(4) for the following data. $\frac{x}{y_0} = -5, y_1 = -1, y_2 = 9, y_3 = 25, y_4 = 55, y_5 = 105$ b) Find the y(4) for the following data.	
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B <u>PART -A</u> 1. a) Find four approximation of $x = x^4 - 10$ using Iteration method. b) Prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$ c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = \cos xy$, y(0) = 1 d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0,2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. 2. a) Find the four approximations of $xe^x = 1$ by Bisection method. b) Find the four approximations of $xlog_{10}x = 2$ by False position method. 3. a) Fit a cubic polynomial for the following data. $y_0 = -5$, $y_1 = -1$, $y_2 = 9$, $y_3 = 25$, $y_4 = 55$, $y_5 = 105$ b) Find the y(4) for the following data. $x = 0$ $\frac{2}{202}$ $\frac{3}{210}$ $\frac{6}{202}$	Iorlea, 7(
2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B PART -A 1. a) Find four approximation of $x = x^4 - 10$ using Iteration method. b) Prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$ c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = \cos xy$, y(0) = 1 d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0,2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. PART -B 2. a) Find the four approximations of $x \log_{70} x = 2$ by False position method. b) Find the four approximations of $x \log_{70} x = 2$ by False position method. 3. a) Fit a cubic polynomial for the following data. $y_0 = -5, y_1 = -1, y_2 = 9, y_3 = 25, y_4 = 55, y_5 = 105$ b) Find the y(4) for the following data. $x = \frac{0}{207} = \frac{2}{940} = \frac{3}{940} = \frac{6}{946} = \frac{1}{946} $	larks: 70
1. a) Find four approximation of $x = x^4 - 10$ using Iteration method. b) Prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$ c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = \cos xy$, y(0) = 1 d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0,2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. PART -B 2. a) Find the four approximations of $xe^x = 1$ by Bisection method. b) Find the four approximations of $xlog_{70}x = 2$ by False position method. 3. a) Fit a cubic polynomial for the following data. $y_0 = -5$, $y_1 = -1$, $y_2 = 9$, $y_3 = 25$, $y_4 = 55$, $y_5 = 105$ b) Find the y(4) for the following data. $\boxed{x 0 2 3 6 0}$	
b) Prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$ c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = \cos xy$, y(0) = 1 d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0, 2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. PART -B 2. a) Find the four approximations of $xe^x = 1$ by Bisection method. b) Find the four approximations of $x\log_{10}x = 2$ by False position method. 3. a) Fit a cubic polynomial for the following data. $y_0 = -5, y_1 = -1, y_2 = 9, y_3 = 25, y_4 = 55, y_5 = 105$ b) Find the y(4) for the following data. $\boxed{x 0 2 3 6}$	
c) By Euler's method find y(0.2), y(0.4) given that $\frac{dy}{dx} = \cos xy$, y(0) = 1 d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0,2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. PART -B 2. a) Find the four approximations of $xe^x = 1$ by Bisection method. b) Find the four approximations of $x\log_{10}x = 2$ by False position method. 3. a) Fit a cubic polynomial for the following data. $y_0 = -5$, $y_1 = -1$, $y_2 = 9$, $y_3 = 25$, $y_4 = 55$, $y_5 = 105$ b) Find the y(4) for the following data.	(4M)
d) Find a_0 , a_n for $f(x) = \frac{x}{2}$ in $[0,2\pi]$. e) State and prove linear property in Fourier transform. f) Find $Z(a^n)$. 2. a) Find the four approximations of $xe^x = 1$ by Bisection method. b) Find the four approximations of $x\log_{10} x = 2$ by False position method. 3. a) Fit a cubic polynomial for the following data. $y_0 = -5$, $y_1 = -1$, $y_2 = 9$, $y_3 = 25$, $y_4 = 55$, $y_5 = 105$ b) Find the y(4) for the following data. $\frac{x + 0}{x + 10} = \frac{2}{107} = \frac{3}{100} = \frac{6}{100}$	(3M)
 e) State and prove linear property in Fourier transform. f) Find Z(aⁿ). PART -B 2. a) Find the four approximations of xe^x = 1 by Bisection method. b) Find the four approximations of xlog₁₀ x = 2 by False position method. 3. a) Fit a cubic polynomial for the following data. y₀ = -5, y₁ = -1, y₂ = 9, y₃ = 25, y₄ = 55, y₅ = 105 b) Find the y(4) for the following data. 	(4M)
 f) Find Z(aⁿ). PART -B 2. a) Find the four approximations of xe^x = 1 by Bisection method. b) Find the four approximations of xlog₁₀ x = 2 by False position method. 3. a) Fit a cubic polynomial for the following data. y₀ = -5, y₁ = -1, y₂ = 9, y₃ = 25, y₄ = 55, y₅ = 105 b) Find the y(4) for the following data. 	(4M)
 PART -B 2. a) Find the four approximations of xe^x = 1 by Bisection method. b) Find the four approximations of xlog₁₀ x = 2 by False position method. 3. a) Fit a cubic polynomial for the following data. y₀ = -5, y₁ = -1, y₂ = 9, y₃ = 25, y₄ = 55, y₅ = 105 b) Find the y(4) for the following data. 	(4M)
 2. a) Find the four approximations of xe^x = 1 by Bisection method. b) Find the four approximations of xlog₁₀ x = 2 by False position method. 3. a) Fit a cubic polynomial for the following data. y₀ = -5, y₁ = -1, y₂ = 9, y₃ = 25, y₄ = 55, y₅ = 105 b) Find the y(4) for the following data. 	(3M)
 b) Find the four approximations of xlog_{T0} x = 2 by False position method. 3. a) Fit a cubic polynomial for the following data. y₀ = -5, y₁ = -1, y₂ = 9, y₃ = 25, y₄ = 55, y₅ = 105 b) Find the y(4) for the following data. 	
 3. a) Fit a cubic polynomial for the following data. y₀ = -5, y₁ = -1, y₂ = 9, y₃ = 25, y₄ = 55, y₅ = 105 b) Find the y(4) for the following data. 	(8M)
y ₀ = -5, y ₁ = -1, y ₂ = 9, y ₃ = 25, y ₄ = 55, y ₅ = 105 b) Find the y(4) for the following data. $\boxed{x 0 2 3 6}$	(8M)
b) Find the y(4) for the following data. x 0 2 3 6 $707 100 966$	(8M)
x 0 2 3 6	
	(8M)
y 707 819 866 966	
4. a) Evaluate $y(0.1)$, $y(0.2)$ & $y(0.3)$ using Taylor's Series method given that	(8M)

b) By modified Euler's formula find y(0.2), y(0.4) given that $\frac{dy}{dx} = 2xy^2$, y(0) = 1 (8M)

1 of 2

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

6. a) Find the Fourier cosine transform of
$$\frac{1}{\sqrt{x}}$$
 (8M)

b) Find the Fourier transform of
$$e^{-\frac{x}{2}}$$
. (8M)

7. a) Prove that If
$$Z[f(n)] = F(z)$$
, then $Lt F(z) = f(0)$. (8M)

b) Solve the difference equation $y_{n+2} - 5y_{n+1} + 6y_n = 3n+5$, $y_0 = 1$, $y_1 = 3$ using (8M) Z-Transforms.

