

www.FirstRanker.com

Code No: R161109

R16

SET - 1

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-II (MM)

(Com to CSE, IT, Agri E)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

DADT A

PART -A

- 1. a) Using Newton Raphson method find an approximate root, which lies near x = 2 (2M) of the equation $x^3 3x 5 = 0$ up to two approximations.
 - b) In Fourier series expansion of $f(x) = x^3, -\pi \le x \le \pi$ find the Fourier coefficient (2M) b_n .
 - c) Evaluate $\Delta(e^x \log 2x)$. (2M)
 - d) Evaluate $\int_{0}^{6} \frac{1}{1+x} dx$ by using Simpson's $1/3^{rd}$ rule, given that (2M)

X	0	1	2	3	4	5	6
Y	1	0.5	0.33	0.25	0.2	0.167	0.143

- e) In Fourier series expansion of $f(x) = x^2, -\pi \le x \le \pi$ find the Fourier coefficient (2M) a_n .
- f) Solve $u_x 4u_y = 0$, by using method of separation of variables. (2M)
- g) If F(p) is the complex Fourier transform of f(x) then prove that (2M) $F\{f(ax)\} = \frac{1}{a}F\left(\frac{p}{a}\right), a > 0.$

PART-B

- 2. a) Solve $x^3 = 2x + 5$ for a positive root by iteration method. (7M)
 - b) Perform two iterations of the Newton-Raphson method to solve the system of (7M) equations $x^2 + 3y^2 = 4$ and $x^2 + 3x + y = 5$.
- 3. a) Prove that $\Delta \tan^{-1} \left(\frac{n-1}{n} \right) = \tan^{-1} \left(\frac{1}{2n^2} \right)$. (7M)
 - b) Find the first and second derivatives of the function tabulated below at the point (7M) x = 0.6.

X	0.4	0.5	0.6	0.7	0.8
Y	1.5836	1.7974	2.0442	2.3275	2.26511

- 4. a) Evaluate $\int_{0}^{1} x\sqrt{1+x^4} dx$ using Simpson's 3/8 rule. (7M)
 - b) Given $y' = x + \sin y$, y(0) = 1. Compute y(0.2) with h = 0.2 using fourth order (7M) Runge-Kutta method.

www.FirstRanker.com

Code No: R161109

R16

SET - 1

- 5. a) Find the Fourier series of $f(x) = \begin{cases} \frac{-1}{2}(\pi x), & \text{for } -\pi < x < 0 \\ \frac{1}{2}(\pi x), & \text{for } 0 < x < \pi \end{cases}$ (7M)
 - b) Obtain half range sine series for e^x in 0 < x < 1. (7M)
- 6. a) Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & \text{if } |x| < 1 \\ 0, & \text{if } |x| > 1 \end{cases}$. Hence Show that (7M) $\int_{0}^{\infty} \frac{\sin x x \cos x}{x^3} dx = \frac{\pi}{4}.$
 - b) Find the finite Fourier sine transform of $f(x) = \sin ax$ in $(0, \pi)$. (7M)
- 7. Find the temperature in a bar of length 20cms whose ends are kept at zero and (14M) lateral surface insulated, if the initial temperature is $\sin \frac{\pi x}{2} + 3\sin \frac{5\pi x}{2}$.

www.FirstRanker.com

Code No: R161109

R16

SET - 2

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-II (MM)

(Com to CSE, IT, Agri E)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART –A

1. a) Using Newton Raphson method find an approximate root, which lies near x = 1.2 (2M)

b) Evaluate $\Delta^3 e^x$ with h = 1. (2M)

c) Evaluate $\int_{0}^{4} e^{x} dx$ by using Trapezoidal rule given that (2M)

 X
 1
 2
 3
 4

 Y
 2.72
 7.39
 20.09
 54.6

of the equation $x^4 - x - 9 = 0$ upto two approximations.

d) In Fourier series expansion of $f(x) = x^3, -\pi \le x \le \pi$ find the Fourier coefficient (2M) a_n .

e) Solve $3u_x + 2u_y = 0$ by using method of separation of variables. (2M)

f) If F(p) is the complex Fourier transform of f(x) then prove that (2M) $F\{f(x-a)\}=e^{ipa}F(p)$.

g) State Dirichlet's conditions. (2M)

PART -B

2. a) Solve $x = 1 + \tan^{-1} x$ by iteration method.

(7M)

b) Perform two iterations of the Newton-Raphson method to solve the system of equations $x^2 + y^2 + xy = 7$ and $x^3 + y^3 = 9$.

3. a) Show that $\Delta f_i^2 = (f_i + f_{i+1}) \Delta f_i$ (7M)

b) For the table below: find f'(1.76) and f'(1.72)

(7M)

 x
 1.72
 1.73
 1.74
 1.75
 1.76

 y
 0.17907
 0.17728
 0.17552
 0.17377
 0.17204

4. a) Evaluate $\int_{0}^{2} xe^{-x^{2}} dx$ using Simpson's rule taking h = 0.25. (7M)

Using fourth order Runge-Kutta method, solve for y at x = 2 from $\frac{dy}{dx} = 3x^2 + 1$, y(1) = 2. (7M)

www.FirstRanker.com

Code No: R161109 (R16) (SET - 2)

- 5. a) Find the Fourier series of $f(x) = \left(\frac{\pi x}{2}\right)^2$ in the interval $0 < x < 2\pi$. (7M)
 - b) Obtain the Fourier cosine series for $f(x) = x \sin x$, $0 < x < \pi$. (7M)
- 6. a) Find Fourier transform of $f(x) = e^{-x^2/2}, -\infty < x < \infty$. (7M)
 - b) Find the finite Fourier cosine transform of $f(x) = x^3$ in $(0, \pi)$. (7M)
- 7. A tightly stretched string of length 20 cms., fastened at both ends is displaced from its position of equilibrium, by imparting to each of its points an initial velocity given by:

 $V(x) = \begin{cases} x, & 0 \le x \le 10 \\ 20 - x, & 10 \le x \le 20 \end{cases}$ x being the distance from one end. Determine the

displacement at any subsequent time.

www.FirstRanker.com

Code No: R161109

R16

SET - 3

(7M)

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-II (MM)

(Com to CSE, IT, Agri E)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

1. a) Using Newton Raphson method find an approximate root, which lies near x = 1 of the equation $x^3 - x - 2 = 0$ up to two approximations.

b) Evaluate
$$\Delta \left(\frac{2^x}{x!}\right)$$
 with $h = 1$. (2M)

c) Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$ by using Simpson's $1/3^{\text{rd}}$ rule given that (2M)

X	0	1	2	3	4	5	6
y	1	0.5	0.2	0.1	0.058	0.038	0.027

d) In Fourier series expansion of $f(x) = \sin x \, |, -\pi < x < \pi$ find the Fourier (2M) coefficient a_n .

e) Find fourier cosine transform of $f(x) = \begin{cases} \cos x, & 0 < x < a \\ 0, & x \ge a \end{cases}$ (2M)

f) Solve $4u_x + u_y = 3u$ by using method of separation of variables. (2M)

g) Define Fourier Integral theorem. (2M)

PART-B

2. a) Find a real root for $e^x \sin x = 1$ using Regula Falsi method.

b) Find an approximate root of the equation $xe^x - \cos x = 0$ using Newton-Raphson (7M) method.

3. a) Show that $\Delta \left(\frac{f_i}{g_i}\right) = (g_i \Delta f_i - f_i \Delta g_i) / g_i g_{i+1}$ (7M)

b) Compute f'(4) from the following table: (7M)

X	1	2	4	8	10
f(x)	0	1	5	21	27

4. a) Evaluate $\int_{0}^{2} e^{-x^2} dx$ using Simpson's rule taking h = 0.25. (7M)

b) Using fourth order Runge-Kutta method, find y(0.2), given y' = x + y, y(0) = 1. (7M)

5. a) Find the Fourier series expansion for f(x), if $f(x) = \begin{cases} 2, & \text{if } -2 \le x \le 0 \\ x, & \text{if } 0 < x < 2 \end{cases}$ (7M)

b) Obtain half range cosine series for e^x in 0 < x < 1. (7M)

www.FirstRanker.com

Code No: R161109

R16

SET - 3

- 6. a) If F(p) is the complex Fourier transform of f(x), then the complex Fourier (7M) transform of f(x) cos ax is $\frac{1}{2}[F(p+a)+F(p-a)]$.
 - b) Find the finite Fourier sine transform of $f(x) = x^3$ in $(0, \pi)$. (7M)
- 7. A tightly stretched string with fixed end points x = 0 and x = L is initially in a (14M) position given by $y = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this position; find the displacement y(x, t).

MMM.FirstRanker.com

www.FirstRanker.com

Code No: R161109

R16

SET - 4

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-II (MM)

(Com to CSE, IT, Agri E)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART –A

- 1. a) Using Newton Raphson method find an approximate root, which lies near x = 2 of the equation $x^4 x 10 = 0$ upto two approximations.
 - b) Evaluate $\Delta^3(a^x)$. (2M)
 - c) Evaluate $\int_{1}^{2} e^{\frac{-1}{2}x} dx$ using Trapezoidal rule given that (2M)

 X
 1
 1.25
 1.5
 1.75
 2

 y
 0.6065
 0.5352
 0.4724
 0.4169
 0.3679

- d) In half range Fourier sine series expansion of $f(x) = \cos x$, $0 < x < \pi$ find the (2M) Fourier coefficient b_n .
- e) Solve $u_x = 2u_t + u$ by using method of separation of variables. (2M)
- f) Find the finite fourier sine transform of f(x)=x where 0 < x < 4. (2M)
- g) Define first shifting property of Fourier transforms. (2M)

PART-B

- 2. a) Find the root of the equation $x \log_{10}(x) = 1.2$ using False position method. (7M)
 - b) Find an approximate root of the equation $(x-1)\sin x x = 1$ using Newton-Raphson (7M) method.
- 3. a) Show that $\sum_{k=0}^{n-1} \Delta^2 f_k = \Delta f_n \Delta f_0.$ (7M)
 - b) Find the first and second derivatives of the function tabulated below at the point x = 1.5.

X	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.0	13.625	24.0	38.875	59.0

- 4. a) Evaluate $\int_{0}^{1} \sqrt{1+x^4} dx$ using Simpson's 3/8 rule. (7M)
 - b) Using fourth order Runge-Kutta method find y(0.2), given $y' = y + e^x$. Y(0) = 0. (7M)

www.FirstRanker.com

Code No: R161109 R16 SET - 4

- 5. a) Find the Fourier series of $f(x) = \begin{cases} 0, & \text{for } -\pi < x < 0 \\ x^2, & \text{for } 0 < x < \pi \end{cases}$ (7M)
 - b) Obtain the Fourier sine series for $f(x) = x \sin x$, $0 < x < \pi$. (7M)
- 6. a) Using Fourier integral, Show that $e^{-x} \cos x = \frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^2 + 2}{\lambda^4 + 4} \cos \lambda x d\lambda$. (7M)
 - b) Find the finite Fourier cosine transform of $f(x) = \sin ax$ in $(0, \pi)$. (7M)
- Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions u(0, y) = 0, u(1, y) = 0, u(x, 0) = 0 and $u(x, a) = \sin \frac{n\pi x}{l}$, where $0 \le x \le l, 0 \le y \le a$ and n is a positive integer.

www.FirstPainker.com