I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2018 MATHEMATICS-III

(Com. to all branches)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any THREE Questions from Part-B

PART - A

1. a) Reduce to echelon form and hence find the rank of the matrix
$\mathrm{A}=\left[\begin{array}{cccc}1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 8 & 1 & 9 & 7\end{array}\right]$
b) Prove that the sum of the given values of a matrix is the trace of A and product of the Eigen values of A is the determinant of A.
c) Find the perimeter of the cardiod $r=a(1-\cos \theta)$
d) Find $\Gamma\left(\frac{1}{2}\right)$
e) Find grad ϕ where $\phi(x, y, z)=\log \left(x^{2}+y^{2}+z^{2}\right)$ at $(1,1,1)$
f) Find work done in moving particle in the force field $\bar{F}=3 x^{2} \bar{i}+(2 x z-y) \bar{j}+z \bar{k}$ along the space curve $x=2 t^{3}, y=t, z=4 t^{2}-t$ from $t=0$ to $t=1$.

PART -B

2. a) Express the following system in matrix form and solve by Gauss elimination method.
$2 x_{1}+x_{2}+2 x_{3}+x_{4}=6 ;$
$6 x_{1}-6 x_{2}+6 x_{3}+12 x_{4}=36$;
$4 x_{1}+3 x_{2}+3 x_{3}-3 x_{4}=1$;
$2 x_{1}+2 x_{2}-x_{3}+x_{4}=10$.
b) Show that the system of equations :
$2 x_{1}-2 x_{2}+x_{3}=\lambda x_{1} ;$
$2 x_{1}-3 x_{2}+2 x_{3}=\lambda x_{2} ;$
$-x_{1}+2 x_{2}=\lambda x_{3}$
can possess a non-trivial solution only if $\lambda=1 \quad \lambda=-3$ and obtain the general solution in each case.
3. a) Reduce the Q.F. $3 x^{2}-2 y^{2}-z^{2}-4 x y+12 y z+8 x z$ to the Canonical form
b) Find the Eigen values and Eigen vectors of the matrix $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
4. a) Evaluate $\iint x^{3} y d x d y$ over the region enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in the first quadrant.
b) Evaluate $\int_{0}^{b} \int_{0}^{\frac{a}{b} \sqrt{b^{2}-y^{2}}} x y d x d y$ by changing the order of the integration.
5. a) Show that
(i) $\Gamma(x) \Gamma(-x)=\frac{-\pi}{x \sin \pi x}$
(ii) $\quad \Gamma\left(\frac{1}{2}+x\right) \Gamma\left(\frac{1}{2}-x\right)=\pi \operatorname{Sec} \pi x$
b) Show that $\beta(m, n)=\int_{0}^{\frac{\pi}{2}} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$ and deduce that
$\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta=\int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta d \theta=\frac{\Gamma\left(\frac{n+1}{2}\right) \sqrt{\pi}}{2 \Gamma\left(\frac{n+2}{2}\right)}$
6. a) Find the values of a, b, c if the directional derivative of the function $\phi=a x y^{2}+b y z+c z^{2} x^{3}$ at the $(1,2,-1)$ has the maximum magnitude 64 in the direction parallel to z axis.
b) Prove that $\nabla^{2}(\log r)=\frac{2}{r^{2}}$
7. a) Verify stoke's theorem for $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ around the square in $z=0$ plane whose sides are along the lines $x=0 ; y=0 ; \mathrm{x}=1, y=1$.
b) Evaluate $\oint_{c} \sin \mathrm{ydx}+\mathrm{x}(1+\cos \mathrm{y}) \mathrm{dy}$ by using green's theorem over the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; z=0$.
