Code No: R1621032

R16

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 MECHANICS OF SOLIDS
(Com to ME, AE \& AME)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART - A

1. a) Define elasticity and plasticity?
b) Write the types of loads?
c) State the assumptions made in the theory of simple bending.
d) Write Mohr's theorems?
e) Define volumetric strain?
f) Write the limitations of Euler's Formula?

PART -B
2. A bar of elastic material is subjected to directed stress in a longitudinal direction, and its strains in the two directions at right angles are reduced to one-half and one third respectively to those which normally occur in a ordinary tension member. If $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{m}=4$, what is the value of elastic constant?
3. Determine the shear force and bending moment diagrams for the cantilever loaded as shown in Figure: 1

Figure: 1
4. a) A beam of symmetrical section 30 cm deep and $\mathrm{I}=12000 \mathrm{~cm}^{4}$, carries U.D.L. of $16 \mathrm{kN} / \mathrm{m}$. Calculate the maximum span of the beam if the maximum bending stress is not to exceed $160 \mathrm{~N} / \mathrm{mm}^{2}$. With this span, calculate the maximum central load if the bending stress is not to exceed the limit given above.
b) From first principles show that the shear stress is not maximum at the neutral axis in case of an isosceles triangular section.
5. A beam of uniform section, 10 meters long, is simply supported at the ends. It carries point loads of 110 KN and 60 KN at distances of 2 m and 5 m respectively from the left end. Calculate: The deflection under each load and maximum deflection. Given: $\mathrm{E}=200 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ and $\mathrm{I}=118 \times 10^{-4} \mathrm{~m}^{4}$.
6. a) Derive a formula for the proportional increase of capacity of a thin spherical shell due to an internal pressure.
b) A cylindrical tank open at top and having vertical axis, is of 2.75 m inside diameter and 20 m high. The tank is filled with water and is made of structural steel with a yield point of $220 \mathrm{MN} / \mathrm{m}^{2}$. Determine the thickness of the tank if (i) longitudinal joint is 90% efficient and (ii) longitudinal joint is 70% efficient. Assume factor of safety as 3 .
7. A solid shaft transmits 2000 kW at the 200 rpm . The maximum torque developed in the shaft is 1.8 times the mean torque. The distance between the bearings is 1.8 meters with a flywheel weighing 50 kN midway between the bearings. Determine the shaft diameter if (i) the maximum permissible tensile stress is 60 MPa (ii) the maximum permissible shearing stress is 40 MPa .

SET - 2

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 MECHANICS OF SOLIDS
(Com to ME, AE \& AME)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Write the types of stresses and strains?
b) Define point of contra flexure?
c) Define bending stress?
d) Define slope, deflection and radius of curvature?
e) Write about circumferential stress?
f) Write about buckling and stability?

PART -B

2. a) Define proportionality limit, elasticity limit, yield stress and ultimate stress of a material?
b) A circular rod of steel 14 mm diameter is testing in a testing machine and it is found that when the tension is 18 kN the total extension on a 21 cm length is 0.15 mm . Find the value of E .
3. A beam of length 6 m is simply supported at its ends. It is loaded with a gradually varying load of $750 \mathrm{~N} / \mathrm{m}$ from left end to $1500 \mathrm{~N} / \mathrm{m}$ to the right end. Construct the SF and BM diagrams and find the magnitude and position of the maximum BM.
4. A simply supported rectangular beam is 150 mm wide by 300 mm deep carries a central concentrated load of 12 KN and a distributed load of $8 \mathrm{KN} / \mathrm{m}$ on a span of 3 metres. Determine the maximum bending stress in the beam and bending stress at 1 metre from the left end.
5. a) What is Macaulay's method for finding out the slope and deflection of a beam?
b) A 3 meters long cantilever is loaded with a point load of 450 N at the free end. If the section is rectangular 80 mm (wide) $\times 160 \mathrm{~mm}$ (deep), and $E=10$ $\mathrm{GN} / \mathrm{m}^{2}$, calculate slope and deflection. (i) at the free end of the cantilever, (ii) at a distance of 0.55 m from the free end.
6. A cylindrical shell of 200 mm diameter and 1 metre length is filled with a fluid at atmospheric pressure. The wall thickness is 8 mm . If an additional 2 x $10^{4} \mathrm{~mm}^{3}$ of the fluid is pumped into the cylinder, find the pressure exerted by the fluid on the wall of the cylinder. Find also the hoop stress induced. $\mathrm{E}=2$ x $10^{5} \mathrm{~N} / \mathrm{mm}^{2}$; Poisson's ratio $=0.3$.

Code No: R1621032
R16
SET - 2
7. A steel shaft of diameter 200 mm runs at 300 rpm . This steel shaft has a 30 mm thick bronze bushing shrunk over its entire length of 8 meters. If the maximum shearing stress in the steel shaft is not to exceed 12 MPa , find
i) power of the engine
ii) torsional rigidity of the shaft.

Take $G_{\text {steel }}=84000 \mathrm{~N} / \mathrm{mm}^{2} ; G_{\text {bronze }}=42000 \mathrm{~N} / \mathrm{mm}^{2}$.

SET - 3

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 MECHANICS OF SOLIDS
 (Com to ME, AE \& AME)

Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Draw stress - strain diagram for mild steel?
b) Define shear force and bending moment?
c) Define section modulus?
d) What is moment area method?
e) Write about longitudinal stress?
f) Write about shafts in parallel?

PART -B

2. a) Define young's modulus, shear modulus and Bulk modulus. Derive the relation between them.
b) The following data refer to a tensile test conducted on a mild steel bar :
diameter of the specimen $=20 \mathrm{~mm}$
length of the specimen $=200 \mathrm{~mm}$
extension at a load of $40 \mathrm{kN}=0.12 \mathrm{~mm}$
Load at yield point $=80 \mathrm{kN}$
Maximum load $=150 \mathrm{kN}$
Total extension $=50 \mathrm{~mm}$
Neck diameter $=15 \mathrm{~mm}$.
Determine (i) young's modulus (ii) yield stress (iii) ultimate stress (iv) percentage elongation and (v) percentage reduction in area.
3. An overhanging beam of length 7 m is supported centrally at two points 5 m apart. It carries a uniformly increasing load of $400 \mathrm{~N} / \mathrm{m}$ from the left end to $800 \mathrm{~N} / \mathrm{m}$ at the midspan. It also carries a point load of 1000 N at the right end. Draw the SF and BM diagrams and locate the point(s) of contra flexure.
4. The cross-section of a joist is a T-section $12.5 \times 12.5 \times 1.2 \mathrm{~cm}$ with 12.5 cm side horizontal. Find the maximum intensity of shear stress and sketch the distribution of stress across the section if it has to resist a shear force of 90 kN .
5. a) A beam of length 6 m is simply supported at the ends. It carries a uniformly distributed load of $4 \mathrm{kN} / \mathrm{m}$ over a length of 2 metres from the left end. Find the maximum deflection of the beam.
Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=2 \times 10^{7} \mathrm{~mm}^{4}$.
b) Write about double integration method?
b) Write about
6. a) Derive a formula for the hoop stress in a thin spherical shell subjected to an internal pressure.
b) A cylindrical shell 10 m long and 50 cm in diameter and 12 mm thick is at atmospheric pressure. What would be its dimensions when it is subjected to an internal pressure of $2 \mathrm{MN} / \mathrm{m}^{2} ? E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\mathrm{m}=4$.
7. Derive an expression for the Euler's crippling load for a long column with following end conditions:
(i) both ends are hinged (ii) both ends are fixed.

Code No: R1621032

SET - 4

II B. Tech I Semester Regular/Supplementary Examinations, October/November - 2018 MECHANICS OF SOLIDS
 (Com to ME, AE \& AME)

Time: 3 hours

Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Define working stress and factor of safety?
b) Write the types of beams?
c) Write the equation of bending?
d) Write the differential equation for the elastic line of a beam?
e) Write Lame's equation?
f) Write about shafts in series?

PART -B

2. a) The piston of a steam is 40 cm diameter and the piston rod diameter 6 cm diameter. The steam pressure is $1.05 \mathrm{~N} / \mathrm{mm}^{2}$. Find the stress in the piston rod and the elongation of 75 cm , taking $E=205 \mathrm{kN} / \mathrm{mm}^{2}$ when the piston is on the in-stroke.
b) Write a note on impact loads?
3. A beam of length 6 m is simply supported at its ends. It is loaded with a gradually varying load of $750 \mathrm{~N} / \mathrm{m}$ from left end to $1500 \mathrm{~N} / \mathrm{m}$ to the right end. Construct the SF and BM diagrams and find the magnitude and position of the maximum BM.
4. A $60 \mathrm{~cm} \times 20 \mathrm{~cm}$ I- joist has 2.5 cm thick flanges and 1.8 cm thick web. Calculate the maximum intensity of shear stress and sketch the distribution of stress across the section, the S.F. at the cross-section being 650 kN .
5. A girder of uniform section and constant depth of 500 mm is freely supported over a span of 8 metres. Calculate the deflection for a uniformly distributed load on it such that the maximum bending stress induced is $90 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{E}=2.04 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. If for the above girder, the flanges are so portioned that there is uniform flange stress of $90 \mathrm{~N} / \mathrm{mm}^{2}$ throughout the beam, calculate the central deflection.
6. a) A boiler shell is to be made of 15 mm thick plate having a limiting tensile stress of $100 \mathrm{MN} / \mathrm{m}^{2}$. If the longitudinal and circumferential efficiencies are 70% and 30% respectively, determine what maximum diameter of the shell would be allowed for a maximum pressure of $2 \mathrm{MN} / \mathrm{m}^{2}$.
b) A vertical cylindrical gasoline storage tank, made of 20 mm thick mild steel plate has to withstand maximum pressure of $1.5 \mathrm{MN} / \mathrm{m}^{2}$. Calculate the diameter of the tank if stress if $240 \mathrm{MN} / \mathrm{m}^{2}$, factor of Safety 2 and joint efficiency 70%.
7. Derive an expression for the shear stress produced in a circular shaft which is subjected to torsion. What are the assumptions made in the derivation?
