

www.FirstRanker.com

www.FirstRanker.com

Co	de N	lo: RA161253 (R16) (SE)	Γ-1
I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 APPLIED PHYSICS (Com to CSE_IT)			
Tir	ne: 3	B hours Max. Ma	rks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is Compulsory 3. Answer any FOUR Questions from Part-B 	
1.	a)	<u>PART –A</u> How coherence of two reflected rays can be achieved as in the case of thin films?	(2M)
	b)	What is resolving power of grating?	(2M)
	c)	Is it possible to polarize sound waves?-Discuss	(2M)
	d)	What are the basic elements required to construct a LASER?	(2M)
	e)	Define drift and diffusion currents in a semiconductor.	(2M)
	f)	Write any two important features of quantum free electron theory of metals.	(2M)
	g)	How does the conductivity vary with temperature for an extrinsic semiconductor?	(2M)
		PART -B	
2.	a)	Describe briefly the theory behind the formation of Newton's rings and derive an expression for the wave length of the light source used.	(10M)
	b)	In Newton's ring arrangement, a source is emitting two wavelength λ_1 =600nm and λ_2 = 590nm. It is found that n th dark ring and (n+1) th dark ring coincides with each other. Find the diameter of the n th dark ring if the radius of curvature of lens is 90 cm	(4M)
3.	a)	What is diffraction grating? Find the conditions for all maximal and minima.	(10M)
	b)	Plot the inensity distribution curve when a grating is exposed to monochromatic light.	(4M)
4.	a)	Explain the terms spontaneous emission, stimulated emission and population inversion.	(10M)
	b)	Describe briefly the characteristics of a laser beam.	(4M)
5.	a)	Deduce Maxwell's four equations in free space.	(10M)
	b)	What are vector and scalar fields? Explain them with examples.	(4M)
6.	a)	Obtain the time independent Schrodinger's wave equation.	(10M)
	b)	Write down the Fermi Dirac distribution function. Explain how the function varies with temperature?	(4M)
7.	a)	What is Hall effect? Derive equations for Hall Coefficient.	(10M)
	b)	A Silicon plate of thickness 1mm, breadth 10 mm and length 100 cm is placed in a magnetic field of 0.5 Wb/m ² acting perpendicular to its thickness. If 10^{-2} A current flows along its length, calculate the Hall voltage developed if the Hall co-efficient	(4M)