I B. Tech II Semester Supplementary Examinations, April/May - 2018
 ENGINEERING DRAWING
 (Com. to All Branches)
 Max. Marks: 75

Time: 3 hours

Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Two points A and B are 100 mm apart. A point C is 75 mm from A and 60 mm from
b) The distance between two fixed points is 90 mm . A point P moves such that the difference of its distance from the two fixed points is always equal to 60 mm . Draw the loci of P .
2. a) A point A is 20 mm above H.P. and in the first quadrant. Its shortest distance from the reference line XY is 40 mm . Draw the projections of the point and determine its distance from V.P.
b) A point A is 2.5 cm above the H.P. and 3 cm infront of the V.P. Draw its Projections.
c) A point A is 2 cm below the H.P. and 4 cm behind the V.P. Draw its Projections.
3. a) A line of 100 mm long, makes an angle of 35° with H.P. and 45° with V.P. Its midpoint is 20 mm above H.P. and 15 mm in front of V.P. Draw the projections of the line.
b) The length of the top view of a line is 40 mm and the length of the front view is 50 mm , the top view is inclined at 30° to xy. Draw the projections of the line, assuming that its one end is situated on H.P. and 25 mm in front of V.P. Determine the inclinations of the line with H.P and V.P.
4. A square ABCD of 50 mm side has its corner A in the H.P, its diagonal AC inclined at 30° to the H.P. and the diagonal BD inclined at 45° to the V.P. and parallel to the H.P. Draw its projections.
5. Draw the projections of a cube of 25 mm long edges resting on the H.P. on one of its corners with a solid diagonal perpendicular to the V.P.
6. A regular pentagon of 30 mm side, is resting on one of its edges on H.P. which is inclined at 45° to V.P. Its surface is inclined at 30° to H.P. Draw its projections.

Code No: R10205

SET-1
7. Draw the isometric view of the ribbed angle plate, shown in figure 7. All (15M) dimensions are in mm .

Figure-7
8. Draw the 3-orthographic views of the block shown in figure 8. All dimensions are (15M) in mm.

Figure-8

