

www.FirstRanker.com

www.FirstRanker.com

Code No: R13202

R13

SET-1

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2018 MATHEMATICS-III

(Com. to all branches)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART -A

1. a) Reduce to echelon form and hence find the rank of the matrix

(4M)

(4M)

$$A = \begin{bmatrix} 1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 8 & 1 & 9 & 7 \end{bmatrix}$$

- b) Prove that the sum of the given values of a matrix is the trace of A and product of the Eigen values of A is the determinant of A.
- c) Find the perimeter of the cardiod $r = a(1 \cos \theta)$
- d) Find $\Gamma\left(\frac{1}{2}\right)$ (3M)
- e) Find grad ϕ where $\phi(x, y, z) = \log(x^2 + y^2 + z^2)$ at (1,1,1) (3M)
- f) Find work done in moving particle in the force field $\overline{F} = 3x^2 \overline{i} + (2xz y)\overline{j} + z\overline{k}$ (4M) along the space curve $x = 2t^3$, y = t, $z = 4t^2 t$ from t = 0 to t = 1.

PART -B

2. a) Express the following system in matrix form and solve by Gauss elimination (8M) method.

$$2x_1 + x_2 + 2x_3 + x_4 = 6$$
;
 $6x_1 - 6x_2 + 6x_3 + 12x_4 = 36$;
 $4x_1 + 3x_2 + 3x_3 - 3x_4 = 1$;
 $2x_1 + 2x_2 - x_3 + x_4 = 10$.

b) Show that the system of equations:

(8M)

$$2x_1 - 2x_2 + x_3 = \lambda x_1;$$

 $2x_1 - 3x_2 + 2x_3 = \lambda x_2;$
 $-x_1 + 2x_2 = \lambda x_3$

can possess a non-trivial solution only if $\lambda = 1$ $\lambda = -3$ and obtain the general solution in each case.

3. a) Reduce the Q.F. $3x^2 - 2y^2 - z^2 - 4xy + 12yz + 8xz$ to the Canonical form (8M)

b) Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (8M)

1 of 2

Code No: R13202

R13

SET-1

- 4. a) Evaluate $\iint x^3 y \, dx \, dy$ over the region enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant.
 - b) Evaluate $\int_0^b \int_0^{\frac{a}{b}\sqrt{b^2-y^2}} xy \, dx \, dy$ by changing the order of the integration. (8M)
- 5. a) Show that (8M)
 - (i) $\Gamma(x)\Gamma(-x) = \frac{-\pi}{x\sin \pi x}$
 - (ii) $\Gamma\left(\frac{1}{2} + x\right)\Gamma\left(\frac{1}{2} x\right) = \pi Sec\pi x$
 - b) Show that $\beta(m,n) = \int_{0}^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$ and deduce that $\frac{\pi}{2} = \frac{\pi}{2} \left(n+1\right) = \frac{\pi}{2}$ (8M)

$$\int_{0}^{\frac{\pi}{2}} \sin^{n}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \cos^{n}\theta d\theta = \frac{\Gamma\left(\frac{n+1}{2}\right)\sqrt{\pi}}{2\Gamma\left(\frac{n+2}{2}\right)}$$

- 6. a) Find the values of a, b, c if the directional derivative of the function (8M) $\phi = axy^2 + byz + cz^2x^3$ at the (1,2,-1) has the maximum magnitude 64 in the direction parallel to z axis.
 - b) Prove that $\nabla^2 (\log r) = \frac{2}{r^2}$ (8M)
- 7. a) Verify stoke's theorem for $\overline{F} = x^2 \overline{i} + xy \overline{j}$ around the square in z = 0 plane whose sides are along the lines x = 0; y = 0; x = 1, y = 1.
 - b) Evaluate $\oint_c \sin y dx + x(1 + \cos y) dy$ by using green's theorem over the ellipse (8M) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; z = 0.$

2 of 2