www.FirstRanker.com

Code No: R13207

R13

SET-1

(4M)

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2018 MATHEMATICS-II (MM)

(Com. to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E & Textile Engg) Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is Compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

1. a) Find $\frac{1}{\sqrt{12}}$ using Newton Raphson method. (4M)

b) Show that $\sum_{i=0}^{n-1} \Delta^2 f_i = f_n - f_0$ (4M)

Find y (0.1) given that $y' = y + \frac{2x}{y}$, y(0) = 1 by Taylor's series method.

d) Find the Fourier series of f(x) = 2x in (-1,1) (4M)

 $e^{-ax}, a > 0 (3M)$

e) Find the Fourier sine transform of

f) Find $Z\left(\frac{1}{n+1}\right)$. (3M)

PART-B

- 2. a) Find the Real root of the equation $x^3 + 2x^2 + 10x 20 = 0$ using False position (8M) method.
 - b) Find the Real root of the equation $x = \cos x$ using Bisection method. (8M)
- 3. a) Fit the cubic polynomial for the data (0,-5), (1,1),(2,9), (3,25),(4,55),(5,105) (8M)
 - b) Find y(8) from the following data. (8M)

X	4	5	7	10
y	8	10	24	30

- 4. a) Find y(0.2) given that $y' = x + 2\sqrt{y}$, y(0) = 1 by modified Euler's method. (8M)
 - b) Find y(0.1) given that $y' = 2xy + x^2$, y(0) = 1 by RK method of fourth order. (8M)
- 5. a) Find the half range cosine series for $f(x) = \begin{cases} -\pi, & 0 < x < 1 \\ x, & 1 < x < 2 \end{cases}$ (8M)
 - b) Find the Half range sine series of $f(x) = \begin{cases} x & 0 < x < \frac{\pi}{2} \\ -x & \frac{\pi}{2} < x < \pi \end{cases}$ (8M)

1 of 2

www.FirstRanker.com

www.FirstRanker.com

Code No: R13207 **R13 SET-1**

- 6. a) Find the Finite Fourier Cosine transform of f(x) defined by $f(x) = \frac{x}{\pi}$ in $(0,\pi)$ (8M)
 - b) Find inverse Fourier cosine transform of $\frac{1}{p}e^{-ap}$ (8M)
- 7. a) State and prove final value theorem in z-transforms (8M)
 - b) Find the inverse Z transform of $\left[\frac{z^2 + z}{(z-1)^2}\right]$ (8M)

MMM.F.It.S.IR. 28/1Kel. COM