

## www.FirstRanker.com

www.FirstRanker.com

Code No: RT22013 (R13)

**SET - 1** 

## II B. Tech II Semester Supplementary Examinations, April-2018 STRENGTH OF MATERIALS - II

(Civil Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any **THREE** Questions from **Part-B** 

|         |    | PART –A                                                                                                                                                                                                                                                                                                                                                       |       |
|---------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.      | a) | What is Mohr's circle of stresses?                                                                                                                                                                                                                                                                                                                            | (4M)  |
|         | b) | Draw springs in series and springs in parallel                                                                                                                                                                                                                                                                                                                | (4M)  |
|         | c) | What are the different types of columns?                                                                                                                                                                                                                                                                                                                      | (3M)  |
|         | d) | Define bending stress &Direct stress                                                                                                                                                                                                                                                                                                                          | (4M)  |
|         | e) | What are the stresses in beam subjects to unsymmetrical bending?                                                                                                                                                                                                                                                                                              | (4M)  |
|         | f) | Define degree of freedom                                                                                                                                                                                                                                                                                                                                      | (3M)  |
| PART -B |    |                                                                                                                                                                                                                                                                                                                                                               |       |
| 2.      |    | Derive expressions for principal stresses, principal planes and max shear stress if there are like direct stresses accompanied by a state of simple shear                                                                                                                                                                                                     | (16M) |
| 3.      |    | A shaft transmits 300kW power at 120rpm. Determine the necessary diameter of solid circular shaft and the necessary diameter of hollow circular section, the inside diameter being 2/3 of the external diameter. The allowable shear stress is 70N/mm². Taking the density at material as 77N/m³, calculate the %saving in the shaft if hollow shaft is used. | (16M) |
| 4.      |    | A column having a T section with a flange 120 mm x 16 mm and web 150 mm x 16mm is 3m long. Assuming the column to be hinged at both ends, find the crippling load by using Euler's formula. $E = 2 \times 10^6 \text{ Kg/cm}^2$                                                                                                                               | (16M) |
| 5.      |    | A beam of rectangular cross section is subjected to pure bending with a moment of 20kNm. The trace of the plane of loading is inclined at 45 <sup>0</sup> to the YY axis of the section. Identify the N.A of the section and calculate the bending stress induced at                                                                                          | (16M) |

1 of 2

each corner of the beam section



## www.FirstRanker.com

www.FirstRanker.com

Code No: RT22013

R13

**SET - 1** 

- 6. a) Explain in brief how stresses in beams due to unsymmetric bending is considered. (8+8M)
  - b) Explain in brief the method of locating shear centre
- 7. Determine the forces in all the members of the frame by method of joints. (16M)



MMN.FirstRanker.com