II B. Tech II Semester Supplementary Examinations, November-2018
 STRENGTH OF MATERIALS - II

(Civil Engineering)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1. a) Define Principal stresses \& Principal strains
b) Write Torsion equation and mention each term in the equation
c) What are the important end conditions of columns?
d) Write the types of retaining walls
e) Define the centroidal principal axes of a section
f) Define determinacy

PART-B

2. In a steel member, at a point the major principal stress is $180 \mathrm{MN} / \mathrm{m}^{2}$ and the minor principal stresses is compressive. If the tensile yield point of the steel is 225 $\mathrm{MN} / \mathrm{m}^{2}$, find the value of the minor principal stress at which yielding will commence, according to each of the following criteria of failure.
(i) Maximum shearing stress
(ii) Maximum total strain energy
(iii) Maximum shear strain energy

Take Poisson's ratio $=0.26$
3. A solid shaft has to transmit 75 kW at 200 rpm . Taking allowable shear stress as $75 \mathrm{~N} / \mathrm{m}^{2}$, find suitable diameter for the shaft, if the maximum torque transmitted on each revolution exceed the mean by 25%.
(b) A closed coiled helical spring made of 6 mm diameter steel wire has 20 coils, each of 100 mm mean diameter, when subjected to axial loads of 70 N , Calculate
(i) The maximum shear stress produced
(ii) The deflection
(iii) The energy stored.

R13

4. a) Derive the expression for crippling load when the both ends of the column are hinged.
b) Derive the Prof. Perry's formula.
5. Determine stresses in case of Retaining wall with suitable example
6. Determine the principal moments of inertia for an unequal angle section 80x60x10mm What do you understand by centroidal principal axes and principal moments of inertia Obtain the principal moment of inertia for an unequal angle section $200 \mathrm{~mm} \times 150 \mathrm{~mm} \times 10 \mathrm{~mm}$
7. Find the forces in the members of truss by method of joints as shown in Fig

