

www.FirstRanker.com

(R16)

SET - 1

II B. Tech II Semester Regular Examinations, November - 2018 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer science and Engineering)

Time: 3 hours

Code No: R1622055

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART –A

1.	a)	How to check acceptance of string by finite automata?	(2M)
	b)	Write the regular expression for the L={w ϵ {0,1}* w has no pair of consecutive zeros	(3M)
	c)	Discuss the Chomsky hierarchy of languages and their recognizers.	(2M)
	d)	How to convert the grammar to Push down automata?	(2M)
	e)	Differentiate Turing machine and push down automata.	(3M)
	f)	Give example problems of type NP-Complete.	(2M)
<u>PART –B</u>			
2.	a)	Design DFA to accept strings with 'c' and 'd' such that number of d's are divisible by 4.	(7M)
	b)	Show with an example equivalence between NFA with and without €- transitions	(7M)
3.	a)	What is a regular language? Convert the given regular expression to regular language. i) $(1+\epsilon)(00*1)0*$ ii) $(0*1*)000(0+1)*$ iii) $(00+10)*1*(10+00)*$	(7M)
	b)	What is relationship between finite automata and regular expression? Explain the process of converting DFA to regular expression.	(7M)
4.	a)	Generate left most and right most derivation and parse tree for given grammars G1: $S \rightarrow 0B 1A, A \rightarrow 0 0S 1AA, B \rightarrow 1 1S 0BB$ for the string <i>00110101</i> G2: $S \rightarrow Ab bA, A \rightarrow a aS bAA, B \rightarrow b bS aBB$ for the string <i>aaabbabbba</i>	(7M)
	b)	Find equivalent grammar in CNF for $S \rightarrow bA aB$, $A \rightarrow bAA aS a$, $B \rightarrow aBB bS b$	(7M)
5.	a)	How to convert the following grammar to PDA that accepts the same language by empty stack $S \rightarrow 0AA A \rightarrow 0S/1S/0$	(7M)
	b)	What is deterministic Push Down Automata? Draw and explain a deterministic PDA for accepting $\{ 0^n 1^n n>1 \}$	(7M)
6.	a)	Design Turing machine to accept all set of palindromes over $\{0, 1\}^*$. And also write the transition diagram and Instantaneous description on the string 10101	(7M)
	b)	Explain the general structure of multi tape and non deterministic Turing	(7M)

machines and show that these are equivalent to basic Turing machines.

www.FirstRanker.com

www.FirstRanker.com

R16 SET - 1 Code No: R1622055

- 7. a) Explain the design of universal Turing machine with its halting problem (7M)
 - b) Write the definitions of P,NP problems and NP complete and NP hard (7M) problems

www.firstRanker.com