II B. Tech II Semester Supplementary Examinations, November - 2018 PROBABILITY AND STATISTICS
 (Com. to CE, CHEM, PE)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
All Questions carry Equal Marks

1 a) Box A contains 5 red and 3 white marbles and Box B contains 2 red and 6 white marbles. If a marble is drawn from each box, what is the probability that they are both of same colour.
b) A businessman goes to hotels $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, 20 \%, 50 \%, 30 \%$ of the time respectively. It is known that $5 \%, 4 \%, 8 \%$ of the rooms in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ hotels have faulty plumbing's. What is the probability that businessman's room having faulty plumbing is assigned to hotel Z?

2 a) For a discrete probability distribution

X	0	1	2	3	4	5	6
$P(X)$	0	$2 K$	$2 K$	$3 K$	K^{2}	$2 K^{2}$	$7 K^{2}+K$

Find (i) k (ii) mean (iii) variance
b) If the probability density function of a random variable X is given by

$$
f(x)= \begin{cases}2 k x e^{-x^{2}} \\ 0 & \text { for } x>0\end{cases}
$$

Determine (i) k (ii) the distribution function of X .
3 a) If 10% of the rivets produced by a machine are defective, find the probability that out of 5 rivets chosen at random (i) none will be defective (ii) one will be defective (iii) at most two rivets will be defective
b) A random variable has Poisson distribution such that $P(1)=P(2)$, find (i) mean of the distribution (ii) $\mathrm{P}(4)$ (iii) $P(x \geq 1)$ (iv) $P(1<x<4)$

4 a) A random sample of size 64 is taken from a normal population with $\mu=51.4$ and $\sigma=68$. What is the probability that the mean of the sample will (i) exceed 52.9 (ii) fall between 50.5 and 52.3 (iii) be less than 50.6 .
b) Find 95% confidence limits for the mean of normal distributed with variance is 0.25 , using a sample of $n=100$ values with mean 212.3

5 a) Mean life time of a sample of 100 tube lights produced by a company is found to be 1560 hrs with a population Standard deviation of 90 hrs . Test the hypothesis for $\alpha=0.05$ that mean life time of the tubes produced by the company is 1580 hrs
b) Ransom samples of 400 men and 200 women in a locality were asked whether they would like to have a bus stop near their residence. 200 men and 40 women in favour of the proposal. Test the significance between the differences of two proportions at 5% level.

1 of 2

6 a) A random sample of 6 steel beams has a mean compressive strength of 58392 psi with standard deviation of 648 psi. Use this information and level of significance $\alpha=0.05$ to test whether the true average compressive strength of the steel from which this sample came is 58000 psi. Assume normality.
b) Fit a Poisson distribution to the following data and for its goodness of fit at 0.05 level of significance

x	0	1	2	3	4
f	419	352	154	56	19

7 a) The following data gives readings 10 samples of size 6 each in the production of a certain component.

Sample	1	2	3	4	5	6	7	8	9	10
Mean \bar{X}	383	508	505	582	557	337	514	614	707	753
Range R	95	128	100	91	68	65	148	28	37	80

Draw Control Charts for \bar{X} (for $n=6, A_{2}=0.483$). What is your conclusion.
b)

Calculate the coefficient of correlation between age of cars and annual maintenance cost and comment

Age of Cars(years)	2	4	6	7	8	10	12
Annual maintenance cost (Rupees)	1600	1500	1800	1900	1700	2100	2000

8 a) A Bank plans to open a single server drive -in banking facility at a certain centre.
It is estimated that 20 customers will arrive each hour on average. If on average, it requires 2 minutes to prôcess a customer's transaction, determine
(i) The proportion of time that the system will be idle
(ii) On the average how long a customer will have to wait before reaching the server
(iii) The fraction of customers who will have to wait
b) A one person barber shop has six chairs to accommodate people waiting for hair cut. Assume that customers who arrive when all the six chairs are full leave without entering the shop. Customers arrive at the average rate of 3 per hour and spend an average of 15 minutes for service. Find (i) The probability that a customer can get directly into the barber chair upon arrival (ii) Expected number of customers waiting for a haircut

