www.FirstRanker.com

www.FirstRanker.com

Code No: RT22022 (R13

SET - 1

II B. Tech II Semester Supplementary Examinations, November - 2018 SWITCHING THEORY AND LOGIC DESIGN

(Com. to EEE, ECE, ECC, EIE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any **THREE** Questions from **Part-B**

PART -A

1. a) Convert the following: i) $(A61)_6 = ()_{10}$, ii) $(1266)_8 = ()_{16}$

b) Obtain the complement of the following Boolean expressions.

i) AB+A(B+C)+B'(B+D)

ii) A+B+A'B'C

c) What are the advantages and disadvantages of the tabular method when compassed to the K-map?

d) Write short notes on ROM, PAL and PLA.

e) Write short notes on RS Flip Flop using NAND gates.

f) Write a short notes on ROM.

PART -B

- 2. a) Perform the following binary arithmetic operations using 1's complement and 2's complements. i) 1101.1101.1011.10 ii) $(642)_8$ -- $(530)_8$.
 - b) Construct a seven-bit error-correcting code to represent the decimal digits by augmenting the excess-3 code and by using odd-1 parity check.
- 3. a) Simplify the following Boolean expressions to a minimum number of literals.

i) $A^{1}B(D^{1}+C^{1}D) + B(A+A^{1}CD)$.

ii) $(x^1 y^1 + z)^1 + z + xy + wz$.

b) Simplify the following function using Karnaugh map method.

 $f = \Sigma m$ (4, 5, 7, 12, 14, 15) $+\Sigma d$ (3, 8, 10).

- 4. a) Briefly explain the design and operation of a carry look ahead adder.
 - b) Construct a 5 x 32 decoder with four 3 x 8 decoders and one 2 x 4 decoder.

1 of 2

www.FirstRanker.com

www.FirstRanker.com

Code No: RT22022 (R13) (SET - 1)

- 5. a) Write short notes on ROM, PAL and PLA
 - b) Implement following four Boolean functions using ROM and PLA. i) $f_1(A,B,C) = \Sigma(1, 2, 4, 6)$. ii) $f_2(A,B,C) = \Sigma(0, 1, 6, 7)$. iii) $f_3(A,B,C) = \Sigma(2, 6)$. iv) $f_4(A,B,C) = \Sigma(1, 2, 3, 5, 7)$.
- 6. Design a 4 bit universal shift register which can be used as a parallel in- parallel out register, serial in serial out register, serial in parallel out and parallel in serial out register with a shift option to wards left or right. Explain each of the behavior with timing waveform.
- 7. a) Define state equivalence and machine equivalence with reference to sequential machines
 - b) Derive the state diagram for an FSM that has an input w and an output z. The machine has to generate z=1, when the previous four values of w, were 1001 or 1111 otherwise z=0. Overlapping input patterns are allowed. An example of the desired behavior is w = 010111100110011111, z = 00000010010010011

MMM FirstRanker com