Code No: R22042

R10

SET - 1

II B. Tech II Semester Supplementary Examinations, November - 2018 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Com. to ECE, EIE)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Derive the expression for electric field intensity \mathbf{E} considering the surface charge distribution of charge density $\boldsymbol{\rho}_{s}$.
b) The point charges $-2 \mathrm{nC}, 6 \mathrm{nC}$, and 10 nC are located at $(0,0,0),(0,1,0)$ and $(1,0,0)$ respectively. Find the energy in the system.
2. a) State and prove the Biot-savart's law.
b) If the magnetic field is $\mathbf{H}=0.01 / \mu_{0} \mathbf{a}_{\mathbf{x}} \mathrm{A} / \mathrm{m}$, what is the force on a charge of 1.0 pC moving with a velocity of $10^{6} \mathbf{a}_{\mathbf{x}} \mathrm{m} / \mathrm{s}$.
3. a) Derive the Boundary conditions for the tangential and normal components of Electric fields at the Dielectric-Conductor interface.
b) Show that the displacement current in the dielectric of parallel-plate capacitor is equal to the conductor current in its leads.
4. a) What is meant by Polarization of a wave? Explain.
b) Discuss about the wave propagation in diêlectrics and derive the expression for intrinsic impedance of a good dielectric.
5. a) Explain the reflection of uniform plane waves with normal incidence at a plane conductor boundary.
b) An EM wave in free space is incident normally on a dielectric whose $\boldsymbol{\varepsilon}_{\mathbf{r}}=7.0$. Find the Reflection and Transmission coefficients.
6. a) Derive the expression for cutoff frequency of a parallel plane waveguide.
b) A parallel plate waveguide made of two perfectly conducting infinite planes spaced 5 cm apart in air operates at a frequency of 5 GHz . Find the maximum time average power that can be propagated per unit width of the guide for TE_{10} and TM_{10} modes.
7. a) Define the primary constants of a transmission line and derive the expression for input impedance at any point.
b) The characteristic impedance of 1 KM long line is 150Ω and is terminated in 250Ω. It is fed with 5 V having a source resistance of 50Ω at $\omega=0.3 \mathrm{rad} / \mathrm{sec}$. Find the input voltage and current.
8. a) Discuss about the applications of smith chart.
b) Define the reflection coefficient and derive the expressions for i / p impedance in terms ofreflection coefficient and VSWR.
