

www.FirstRanker.com

www.FirstRanker.com

Code No: RT22041

R13

SET - 1

II B. Tech II Semester Supplementary Examinations, November - 2018 ELECTRONICS CIRCUIT ANALYSIS

		(Com. to ECE, EIE)	
Tir	ne: 3	8 hours Max. Ma	arks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
		2. Answer ALL the question in Part-A3. Answer any THREE Questions from Part-B	
		2.7 Allower any TTREE Questions from Tare-b	
		<u>PART –A</u>	
1.	a)	Explain frequency stability of an oscillator	(4M)
	b)	Draw and explain about crystal based oscillator.	(4M)
	c)	What are the characteristics of negative feedback amplifiers	(4M)
	d)	Define rise time and drive an expression for it.	(4M)
	e)	Define noise and indicate various types of noises in amplifiers.	(3M)
	f)	Classify different types of distortions possible in amplifiers.	(3M)
		<u>PART –B</u>	
2.	a)	Draw the equivalent circuit of a common source amplifier at high frequencies.	(8M)
	b)	Derive the expression for voltage gain, input and output resistances. A common drain amplifier uses a MOSFET with the following parameters	(8M)
	U)	$g_m = 2.5 \text{mA/V}$, $r_d = 60 \text{kohms}$, $C_{gs} = 4 \text{pF}$, $C_{ds} = 2 \text{pF}$, $C_{gd} = 3 \text{pF}$. The value of	(0111)
		Rs = 100 K ohms. The amplifier operates at 30KHz. Find Voltage gain, input	
		resistance, output resistance and input capacitance.	
3.	a)	Derive the expressions for voltage gain, current gain, input and output resistances	(8M)
		of a Darlington pair.	
	b)	Draw the circuit diagram of a two stage FET based RC coupled amplifier and	(8M)
		derive an expression for voltage gain, input and output resistances.	
1 .	a)	A Common source FET amplifier has a load resistance of 600kOhms. The ac drain	(8M)
	/	resistance of the device is 150kohms and the transconductance is 0.75mAV ⁻¹ .	(-)
		Calculate the voltage gain of the amplifier.	
	b)	Discuss quantitatively the effect of mixing on input resistance.	(8M)
5.	a)	Derive the frequency of oscillation of Colpitt's oscillator? What are the limitations	(8M)
		of this oscillator?	,
	b)	State and explain the Barkhausen criterion in sinusoidal oscillators.	(8M)
5.	a)	What is a cross over distortion in power amplifier and suggest a remedy for it.	(8M)
	b)	Derive the expression for Maximum efficiency and working of transformer	(8M)
		coupled Class Amplifier	. ,
7.	a)	With necessary diagram and explanation derive the expression for efficiency of a	(8M)
	,	class C tuned amplifier.	()
	b)	Explain various types of coupling of transformer used in double tuned amplifiers	(8M)
		with necessary diagrams	