

www.FirstRanker.com

www.FirstRanker.com

Code No: RT22042

R13

SET - 1

II B. Tech II Semester Supplementary Examinations, November -2018 RANDOM VARIABLES AND STOCHASTIC PROCESSES

(Electronics and Communications Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer **ALL** the question in **Part-A**

3. Answer any **THREE** Questions from **Part-B**

PART-A

- 1. a) Write the properties of Distribution function
 - b) Derive the relationship between variance, first and second moments
 - c) Joint Sample Space has three elements (0, 0), (1, 1), and (2, 2) with probabilities 0.35, 0.4, 0.25 respectively. Draw the Joint Distribution Function diagram
 - d) What is Stationarity? Write the conditions for Wide-Sense Stationary Random process.
 - e) Determine which of following functions can and cannot be valid power density spectrum. For those are not, explain why.

ii. $\frac{\omega^2}{\omega^4+1} - \delta(\omega)$

What are the causes of thermal noise?

- Gaussian random voltages X for which $a_X = 0$ and $\sigma_X = 4.2V$ appears across a $100-\Omega$ resistor with power rating of 0.25W. What is the probability that the voltage will cause an instantaneous power that exceeds the resistor's rating?
 - b) A Gaussian random variable X has $a_x = 2$, and $\sigma_x = 2$

I.

Find $P\{X > 1.0\}$ Find $P\{X \le -1.0\}$ II.

- A random variable X is uniformly distributed on the interval $(-\pi/2, \pi/2)$. X is transformed to the new random variable $Y = T(X) = a \tan(X)$, where a > 0. Find the probability density function of Y
 - b) Prove that mean and variance of Poisson random variable is same
- a) Write the statement of Central Limit Theorem.
 - b) Find the density function of W=X+Y, where X and Y are satirical independent random variables and the densities of X and Y are assumed to be:

Fx (x)=0.5[u(x)-u(x-2)]; fy(y)=0.25[u(y)-u(y-4)]

- a) Write the properties of Cross correlation Function of Random Process
 - b) A random process is defined by X(t) = A, where A is a continuous random variable uniformly distributed on (0, 1). Determine the form of the sample functions, classify the process.

1 of 2

www.FirstRanker.com

www.FirstRanker.com

Code No: RT22042

R13

SET - 1

- 6. A random process has the power density spectrum $S_{XX}(\omega) = \frac{6\omega^2}{[1+\omega^2]^3}$ Find the average power in the process.
 - b) A random process is given by $X(t) = A\cos(\Omega t + \theta)$ where A is a real constant, Ω is a random variable with density function $f_{\Omega}(\Omega)$ and θ is a random variable uniformly distributed over the interval $(0, 2\pi)$ independent of Ω . Show that the power spectrum of X(t) is

$$S_{XX}(\omega) = \frac{\pi A^2}{2} [f_{\Omega}(\omega) + f_{\Omega}(-\omega)]$$

and also find P_{YY} .

Derive the expression for root mean square value of thermal noise voltage across 7. a) ab terminals of network shown below:

- b) Define the following random processes:
 - i.
 - ii.
 - iii.