

www.FirstRanker.com

www.FirstRanker.com

Code No: R22024

II B. Tech II Semester Supplementary Examinations, November - 2018 **ELECTRICAL MACHINES - II** (Electrical and Electronics Engineering)

Time: 3 hours Max. N			ax. Marks	Marks: 75	
		Answer any FIVE Questions All Questions carry Equal Marks			
1.	a)	Compare and Contrast between Core type of transformer and Shell typ transformer	e of	[8M]	
	b)	The core of a 120 KVA, 11000/415V, 50 Hz, single phase core type transforme a cross section of 25 cm x 25 cm. Find i) the number of High voltage and voltage turns per phase and ii) the emf per turn if the maximum core density is r exceed 1.6 Tesla. Assume a stacking factor of 0.88. What will happen if its pri- voltage is increased by 15 $\%$ on no load	er has l low not to mary	[7M]	
2.	a)	Derive the condition for maximum efficiency of a Single phase transformer.		[7M]	
	b)	A 660 V/ 220 V single – phase transformer takes a no – load current of 2 A power factor of 0.225 lagging. The transformer supplies a load of 30 A at a p factor of 0.9 lagging. Calculate the current drawn by the primary from the main the primary power factor. Neglect the winding resistance and reactance	at a ower s and	[8M]	
3.	a)	Describe how the primary current adjusts itself as the load on a transform	er is	[7M]	
	b)	Open and short-circuit tests performed on a 500 kVA, $6600/2300$ V, 50 transformer yielded the following data: No-load loss = 3 kW; Full-load short circuit loss = 4 kW. Calculate the load (kVA) at which the transformer efficiency would be maxi for a given power factor. Calculate this efficiency for a power factor of 0.85.) Hz mum	[8M]	
4.	a)	Explain the basic purpose of a tertiary winding.		[5M]	
	b)	An ideal 3-phase step-down transformer, connected delta/star delivers power to balanced 3-phase load of 120 kVA at 0.8 power factor. The input line voltage kV and the turn-ratio of the transformer, phase-to-phase is 10. Determine the voltages, line currents, phase voltages and phase currents on both the primary the secondary sides.	a [is 11 e line and	10M]	
5.	a)	Compare and contrast the squirrel-cage and slip-ring induction motors.		[7M]	
	b)	A 6-pole, 50 Hz, 3-phase induction motor running on full load develops a u torque of 160 Nm when the rotor emf makes 120 complete cycles per mi Calculate the shaft power output. If the mechanical torque lost in friction and for core-loss is 10 Nm. Compute (i) the copper-loss in the rotor windings, (ii input to the motor, and (iii) the efficiency. The total stator loss is given to be 800	seful nute. I that I) the 0 W.	[8M]	
6.	a)	Derive the equations for Starting torque and maximum torque of a three p induction motor	ohase	[8M]	
	b)	Explain about the Cogging and Crawling and give its affects on Three r	ohase	[7M]	

www.FirstRanker.com

www.FirstRanker.com

Code No: 1	R22024
------------	--------

R10

SET - 1

- 7. A 400 V, 3-phase, 6-pole, 50 Hz induction motor gave the following test results: [15M] No-load : 400 V, 8 A, 0.16 power factor Blocked-rotor : 200 V, 39 A, 0.36 power factor Determine the mechanical output, torque and slip when the motor draws a current of 30 A from the mains. Assume the stator and rotor copper losses to be equal.
- 8. a) What methods are used in starting squirrel cage induction motor? Which is the most [8M] common method used and what is its superiority?
 - b) Explain in detail about the Rotor resistance control in Slip ring Induction motors [7M]

www.firstRanker.com

2 of 2