

www.FirstRanker.com

www.FirstRanker.com

Code I	No: R22023	SET - 1
II B. Tech II Semester Supplementary Examinations, April-2018 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, ECE, ECC, BME, EIE) Time: 3 hours Max. Marks: 7		
Time:	Answer any FIVE Questions	Max. Marks: 7.
	All Questions carry Equal Marks	
1. a)	Subtract the following numbers using 2's and 1's complement (i) 5250 – 321 (ii) 753 – 864 (iii) 3570 – 2100 (iv) 20 – 1000	[8M
b)	Explain about weighted and non-weighted codes	[7M
2. a)	Simplify the following Boolean expressions to a minimum number of literals i)ABC+A'B+ABC' ii)x'yz +xz iii) (x +y)'(x' + y')	[8M]
b)	Implement the following function with NAND gates $F(x, y) = \Sigma(0,3)$	[7M
3. a)	Simplify the following using QM Tabular Method F(A = B = C = D = F) = F(0 = 2, 4, 6, 0, 11, 12, 15, 17, 21, 25, 27, 2, 21)	[7M
b)	F(A, B, C, D, E) = $\Sigma(0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 2, 31)$ Minimize the given 5 variable function using K-map method f = Σ (3, 4, 9, 10, 11, 12, 18, 20, 21, 22, 23, 25, 26, 30).	[8M
4. a)	Draw and explain about BCD adder circuit Excess3 adder circuit	[7M
b)	Draw the logic diagram 4-bit binary adder-subtractor circuit and explain	[8M
5. a)	Implement the following Boolean function with a multiplexer (a) F(A, B, C, D) = $\sum (1, 2, 5, 8, 6, 10, 12, 14)$ (b) F(A, B, C, D) = $\sum (1, 2, 5, 6, 12)$	[8M
b)	What is necessity of priority encoder? Explain about 8 to 3 priority encoder.	[7M
6. a)	Write the difference between PROM, PLA.	[5M
b)	A combinational circuit is defined by the functions $F_1(A,B,C) = \sum(3, 5, 6, 7)$ $F_2(A,B,C) = \sum(0, 2, 4, 7)$ Implement the circuit with a PLA having 3 inputs , four product terms and two output	[10M wo
7. a)	What is flip flop? Explain about JK flip flop.	[8M]
b)	Explain about universal shift register	[7M]
8. a)	What is Finite state machine and explain its capabilities	[7M
b)	Draw a state diagrams of a sequence detector which can detect 011	[8M]
	1 of 1	