II B. Tech II Semester Supplementary Examinations, November-2017 STRENGTH OF MATERIALS
 (Civil Engineering)

Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. A cantilever of length 2 m carries a uniformly distributed load of $2.5 \mathrm{KN} / \mathrm{m}$ run for a length of 1.25 m from the fixed end and a point load of 1 KN at the free end. Find the deflection at the free end if the section is rectangular 12 cm wide and 24 cm deep and $\mathrm{E}=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$
2. a) Write the Lami's equations for thick cylindrical shell and explain the terms.
b) A thick spherical shell of 20 m internal diameter is subjected to an internal fluid pressure of $7 \mathrm{~N} / \mathrm{mm}^{2}$. If the permissible tensile stress in the shell materials is $8 \mathrm{~N} / \mathrm{mm}^{2}$, find te the thickness of the shell.
3. A rectangular block of material is subjected to a tensile stress of $110 \mathrm{~N} / \mathrm{mm}^{2}$ on one plane and a tensile stress of $47 \mathrm{~N} / \mathrm{mm}^{2}$ on the plane at right angle to the former plane. Each of the above stress is accompanied by a shear stress of $63 \mathrm{~N} / \mathrm{mm}^{2}$ Find (i) The direction and magnitude of each of the principal stress (ii) Magnitude of greatest shear stress
4. Determine the diameter of a solid shaft which will transmit 300 KN at 250 rpm . The maximum shear stress should not exceed $30 \mathrm{~N} / \mathrm{mm}^{2}$ and twist should not be more than 10 in shaft length 2 m . Take modulus of rigidity $=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
5. a) Derive an equation for Euler's crippling load.
b) A hallow cast iron cylindrical column, 4 m long with both ends firmly fixed carries an axial load of 200 kN . The internal diameter of the column is equal to 0.8 times the external diameter. Determine the section of the column, taking $\mathrm{fc}=600 \mathrm{~N} / \mathrm{mm}^{2}$, Rankness constant $\alpha=1 / 1600$ and f. o . $\mathrm{s}=6$.
6. A square chimney 25 m high, having an opening of 1_{n} by 1_{n} is subjected to a horizontal wind pressure of $1.5 \mathrm{KN} / \mathrm{m}^{2}$. Find the necessary thickness of brick work at base if the density of the masonry is $21 \mathrm{KN} / \mathrm{m}^{3}$ and the max permissible stress on brick masonry is limited to $0.8 \mathrm{~N} / \mathrm{mm}^{2}$
7. a) What are the forces developed at a section in a curved beam.
b) Determine the rotation at the free end of a cantilever curved beam of quarter circle of radius ' R ' subject to a concentrated load ' P ' at its free end.
8. Find the forces in all the members of the simply supported truss loaded as shown in below figure

2 of 2

