SET - 1

II B. Tech II Semester Supplementary Examinations, November-2017
STRUCTURAL ANALYSIS - I
(Civil Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. Analyze the prop cantilever beam of span L subjected to udl w/m (15M) throughout the span and draw S.F.D. and B.M.D.
2. Find the fixed end moments for a fixed beam of span 8 m subjected to a concentrated clockwise moment of 20 kNm at 3 m from the left end.
3. A two span continuous beam ABC is fixed at A and C and is continuous over B . The span $\mathrm{AB}=4.3 \mathrm{~m}$ and spam $\mathrm{BC}=5.7 \mathrm{~m}$. The span AB carries a UDL of $55 \mathrm{kN} / \mathrm{m}$ and span BC carries a central point load of 42 kN . EI is constant for the whole beam. Find the moments and reactions at all supports and draw the bending moment diagram using Clapeyron's theorem.
4. A beam $A B C, 10 \mathrm{~m}$ long, fixed at ends A and B is continuous over joint B and is loaded as shown in Fig. Using the slope deflection method, compute the end moments and plot the bending moment diagram. Also, sketch the deflected shape of the beam. The beam has constant EI for both the spans

5. A portal frame ABCD is fixed at supports $\mathrm{A} \& D$. The span $\mathrm{AD}=4.5 \mathrm{~m}$ and the height $\mathrm{AB}=\mathrm{CD}=3.5 \mathrm{~m}$. It carries a UDL of $25 \mathrm{kN} m$ on BC . Analyze the frame by strain energy method and draw bending moment diagram. Take EI=1
6. A simply supported beam of span 10 m carries a udl of $20 \mathrm{kN} / \mathrm{m}$ over its central 4 m length. With the help of influence line diagram, find the shear force at 3 m from the left support

Code No: R22016
R10
SET - 1
7.

A beam ACDB is as shown in fig. Find the reaction at support, S.F at 4 m from support C and B.M. at 4 m from support c using ILD

8. Find the horizontal deflection of the joint D of the truss shown in the figure. The (15M) sectional areas of the members are as follows.
Horizontal members - $1000 \mathrm{~mm}^{2}$
Vertical members $\quad-1200 \mathrm{~mm}^{2}$
Inclemd member $\quad-2000 \mathrm{~mm}^{2}$
Take E $=200 \mathrm{kN} / \mathrm{mm}^{2}$

