www.FirstRanker.com

SET - 1

II B. Tech II Semester Supplementary Examinations, November-2017
 PULSE AND DIGITAL CIRCUITS
 (Com. to EEE, ECE, ECC, BME, EIE)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any THREE Questions from Part-B

PART -A

1. a) Define time constant of a RC circuit.
b) Design a clamping circuit using diode to restore the negative peaks of 2 kHz signal to 0 V . Assume $\mathrm{R}_{\mathrm{f}}=100 \Omega, \mathrm{R}_{\mathrm{r}}=200 \mathrm{k} \Omega$, drop across diode is 0.6 V .
c) Distinguish between different methods of triggering.
d) Define the terms fan-out, fan-in and noise margin.
e) Define the terms displacement error and transmission error.
f) Define synchronization and mention different types of synchronization.

PART -B
2. a) Using relevant diagrams and wave forms explain the response of a low pass RC circuit to ramp input. Obtain the expression for its output voltage.
b) Discuss different factors involved with delay time of a transistor.
3. a) Obtain the transfer characteristic for the clipper circuit shown in figure below.

b) Explain the principle of clamping and also discuss the need for shunt resistor in parallel with the diode in the basic clamping circuit.
4. a) Design a bistable multi vibrator with the following specifications.
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}$ sat $=(5 \mathrm{M}) \mathrm{A}, \mathrm{h}_{\mathrm{FE}}(\mathrm{min})=25$ and max trigger frequency of 25 kHz .
b) Explain the operation of an astable collector coupled multivibrator using relevant diagrams.
5. a) Explain the operation of a 2 input TTL NAND gate.
b) Explain the operation of a CMOS NOR gate.
6. a) Explain the working of transistor bootstrap time base generator with different gate width signal as input.
b) Write short notes on current base sweep generator?
7. a) Explain the working of a four diode sampling gate
b) Explain pulse synchronization of relaxation devices.

