

www.FirstRanker.com

www.FirstRanker.com

Code	No: R22055 R10 SE	T - 1
II B. Tech II Semester Supplementary Examinations, November-2017 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering)		
Time:	: 3 hours Max. M	arks: 75
Answer any FIVE Questions All Questions carry Equal Marks		
1. a) b) c)	What is FA? What are the applications of FA?	(6M) (5M) (4M)
2.	Define Mealy machine? Construct the Mealy machine equivalent to the Moore machine M defined by table 1. Table 1: a=0 $a=1$ output q1 q1 q2 0 q2 q1 q3 0 q3 q1 q3 1	(15M)
3. a) b) c)	Explain about the closure properties of regular sets.	(6M) (5M) (4M)
4. a) b) c)	Explain with example. Discuss about derivation tree.	(6M) (4M) (5M)
5.	Define CFG? Construct the CFG for the language i) All strings with an odd number of a's and even number of b's ii) palindrome iii) L= { $0^i 1^j 0^k / j = i+k$ } iv) L= { $a^m b^n / m \le n \le 2m$ }	(15M)
6.	Design a PDA to accept the set of all strings of a's and b's that are not of the form ww, that is, not equal to any string repeated.	(15M)
7.	Construct the Turing machine that accepts all a's and b's such that no of a's is equal to no of b's.	(15M)
8. a) b) c)	Discuss about the satisfiability problem	(5M) (5M) (5M)

1 of 1