

Code No: RT22042

www.FirstRanker.com

www.FirstRanker.com

(R13)

SET - 1

II B. Tech II Semester Supplementary Examinations, November-2017 RANDOM VARIABLES AND STOCHASTIC PROCESSES (Electronics and Communications Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **THREE** Questions from **Part-B**

PART –A

- 1. a) Define Random variable? Write the Conditions for a Function to be a Random Variable.
 - b) Prove that expectation of constant is same constant
 - c) Write the properties of Joint Distribution Function
 - d) What is Strict-Sense Stationary random process?
 - e) Determine which of following functions can and cannot be valid power density spectrum. For those are not, explain why.

i.
$$\frac{\omega^2}{\omega^6+3\omega^2+3}$$
 ii. $\frac{\omega^4}{j\omega^6+\omega^2+1}$

f) Write a short notes on Johnson noise

PART -B

2. a) Let X is Gaussian random variable, show that $\int_{\infty}^{\infty} x f_X(x) = m_x$.

- b) Write properties of Conditional density and distribution function of a random variable
- 3. a) State and prove Chebychev's Inequality
 - b) Find the mean and variance of uniform Random variable
- 4. a) Define Marginal density function? Find the Marginal density functions of with joint density function.

$$f_{XY} = \frac{1}{12}u(x)u(y)e^{-x/3}e^{-y/4}$$

- b) Gaussian random variables X and Y have first and second order moments m_{10} = -1.1, m_{20} =1.16, m_{01} =1.5, m_{02} =2.89, R_{XY} =-1.724 find C_{XY} , ρ .
- 5. a) Write the properties of Autocorrelation Function of Random Process.
 - b) Define a random process by $X(t) = A \cos(\pi t)$, where A is a Gaussian random variable with zero mean and variance σ_A^2 . Find the density functions of X(0) and X(1). Is X(*t*) stationary?
- 6. a) Derive the Wiener- Khintchine relationship.
 - b) A random process has the power density spectrum $S_{XX}(\omega) = \frac{6\omega^2}{1+\omega^4}$ Find the average power in the process.

www.FirstRanker.com

www.FirstRanker.com

Code No: RT22042

R13)

SET - 1

- 7. a) Define the following terms.
 (i)Noise equivalent temperature
 (ii) Noise figure
 (iii) Asseilable assesses asia
 - (iii) Available power gain
 - b) The noise present at the input to a two port network is 1μ W. the noise figure F is 0.5dB, the receiver gain $g_a=10^{10}$, calculate:
 - i. The available noise power contributed by two port network
 - ii. The output available power.

www.firstRanker.com