

www.FirstRanker.com

www.FirstRanker.com

Code No: RT22044

R13

SET - 1

II B. Tech II Semester Supplementary Examinations, November-2017

II B. Tech II Semester Supplementary Examinations, November-2017 EM WAVES AND TRANSMISSION LINES			
(Com to ECE, EIE)			
Time: 3 hours Max. M			ırks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any THREE Questions from Part-B			
1.		PART –A Define Linear, isotropic and homogeneous dielectrics.	(4M)
	c)	Write the equation for V_{emf} of moving loop in time varying field. Sketch the plots of \mathbf{E} and \mathbf{H} as a function of distance and time in free space. What is Brewster's angle? Explain. Draw the L – type equivalent circuit model of a two conductor transmission line.	(3M) (4M) (4M) (3M)
	f)	What is meant by stub? Explain. PART –B	(4M)
2.	a) b)	Derive Poisson's and Laplace equations from fundamentals. A hollow conducting cylinder has a inner radius 'a' and outer radius 'b' and carries a current 'I' along the positive z-direction. Find H everywhere.	(8M) (8M)
3.	a) b)	State and explain Faraday's law of electromagnetic induction. A conducting circular loop of radius 20 cm lies in the $z=0$ plane in a magnetic field $\mathbf{B}=10\cos 377t\ \mathbf{a_z}\ \text{mWb/m}^2$. Calculate the induced voltage in the loop.	(8M) (8M)
4.	a)b)	What are the properties of uniform plane wave? Show that for a uniform plane wave, the field components are zero in the direction of propagation of it. A uniform plane wave in air has $\mathbf{E} = 10\cos(2\pi \ x\ 10^6 t - \beta z)\mathbf{a_y}\ V/m$. (i) Calculate β and λ . (ii) Sketch the wave at $z=0,\lambda/4,\lambda/2$. (iii) Find \mathbf{H} .	(8M) (8M)
5.		State and explain poynting theorem. In free space (z \leq 0), a plane wave with $\mathbf{H_i} = 10 \cos(10^8 t - \beta z) \mathbf{a_x}$ mA/m is incident normally on a lossless medium ($\epsilon = 2\epsilon_0$, $\mu = 8\mu_0$) in the region $z \geq 0$. Determine the reflected wave $\mathbf{H_r}$, $\mathbf{E_r}$ and the transmitted wave $\mathbf{H_t}$, $\mathbf{E_t}$.	(8M) (8M)
6.		Define the term characteristic impedance and derive the expression for it. Measurements on a lossy transmission line at 800 MHz indicate Z_0 = 50 + j0 Ω , α = 0.01 Np/m and β = 4 rad/m. determine the line parameters R, L, G and C.	(8M) (8M)
7.	a) b)	Explain the construction of Smith Chart. A 50 Ω coaxial cable feeds a 75 + j20 Ω dipole antenna. Find reflection coefficient and standing wave ratio.	(8M) (8M)