# II B. Tech II Semester Supplementary Examinations, November-2017 EM WAVES AND TRANSMISSION LINES 

> (Com to ECE, EIE)

Time: 3 hours
Max. Marks: 70

## Note: 1. Question Paper consists of two parts (Part-A and Part-B) <br> 2. Answer ALL the question in Part-A <br> 3. Answer any THREE Questions from Part-B

## PART -A

1. a) Define Linear, isotropic and homogeneous dielectrics.
b) Write the equation for $\mathrm{V}_{\text {emf }}$ of moving loop in time varying field.
c) Sketch the plots of $\mathbf{E}$ and $\mathbf{H}$ as a function of distance and time in free space.
d) What is Brewster's angle? Explain.
e) Draw the L - type equivalent circuit model of a two conductor transmission line.
f) What is meant by stub? Explain.

## PART -B

2. a) Derive Poisson's and Laplace equations from fundamentals.
b) A hollow conducting cylinder has a inner radius ' $a$ ' and outer radius ' $b$ ' and carries a current ' I ' along the positive z-direction. Find $\mathbf{H}$ everywhere.
3. a) State and explain Faraday's law of electromagnetic induction.
b) A conducting circular loop of radius 20 cm lies in the $\mathrm{z}=0$ plane in a magnetic
field $\mathbf{B}=10 \cos 377 \mathrm{t} \mathbf{a}_{\mathbf{z}} \mathrm{mWb} / \mathrm{m}^{2}$. Calculate the induced voltage in the loop.
4. a) What are the properties of uniform plane wave? Show that for a uniform plane wave, the field components are zero in the direction of propagation of it.
b) A uniform plane wave in air has $\mathbf{E}=10 \cos \left(2 \pi \times 10^{6} \mathrm{t}-\beta \mathrm{z}\right) \mathbf{a}_{\mathbf{y}} \mathrm{V} / \mathrm{m}$.
(i) Calculate $\beta$ and $\lambda$.
(ii) Sketch the wave at $z=0, \lambda / 4, \lambda / 2$.
(iii) Find $\mathbf{H}$.
5. a) State and explain poynting theorem.
b) In free space $(\mathrm{z} \leq 0)$, a plane wave with $\mathbf{H}_{\mathbf{i}}=10 \cos \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \mathbf{a}_{\mathbf{x}} \mathrm{mA} / \mathrm{m}$ is incident normally on a lossless medium ( $\varepsilon=2 \varepsilon_{0}, \mu=8 \mu_{0}$ ) in the region $\mathrm{z} \geq 0$. Determine the reflected wave $\mathbf{H}_{\mathbf{r}}, \mathbf{E}_{\mathbf{r}}$ and the transmitted wave $\mathbf{H}_{\mathbf{t}}, \mathbf{E}_{\mathbf{t}}$.
6. a) Define the term characteristic impedance and derive the expression for it.
b) Measurements on a lossy transmission line at 800 MHz indicate $\mathrm{Z}_{0}=50+\mathrm{j} 0 \Omega, \alpha$ $=0.01 \mathrm{~Np} / \mathrm{m}$ and $\beta=4 \mathrm{rad} / \mathrm{m}$. determine the line parameters $R, \mathrm{~L}, G$ and $C$.
7. a) Explain the construction of Smith Chart.
b) A $50 \Omega$ coaxial cable feeds a $75+\mathrm{j} 20 \Omega$ dipole antenna. Find reflection coefficient and standing wave ratio.
