II B. Tech II Semester Supplementary Examinations, November-2017 MECHANICS OF SOLIDS
 (Com. to ME, AME, MM)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
All Questions carry Equal Marks

1. a) An unknown weight falls through a height of 10 mm on a collar rigidly attached to the lower end of a vertical bar 500 cm long and $600 \mathrm{~mm}^{2}$ in section. If the maximum extension of the rod is to be 2 mm , what is the corresponding stress and magnitude of the unknown weight? Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
b) Two vertical rods one of steel and the other of copper are each rigidly fixed at the top and 60 cm apart. Diameters and lengths of each rod are 3 cm and 3.5 cm respectively. A cross bar fixed to the rods at the lower ends Carries a load of 5000 N such that the cross bar remains horizontal even after loading. Find the stress in each rod and position of the load on the bar. Take $E_{\mathrm{s}}=2 . \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, E_{\mathrm{c}}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
($7 \mathrm{M}+8 \mathrm{M}$)
2. a) Draw the sheer force and bending moment diagram for given below figure. Also find the maximum bending moment and point of contra flexure.

b) A 10 m long beam ABC is simply supported at A and B, B being 2 m from the right end of the beam. It carries point loads of 8 kN and 4 kN at a distance 3 m and 5 m from A. The beam also has uniform distributed loads of intensity $4 \mathrm{kN} / \mathrm{m}$ for a distance of 4 m starting from A and of $6 \mathrm{kN} / \mathrm{m}$ on BC. Draw the shear force and bending moment diagrams indicating principal values.
($8 \mathrm{M}+7 \mathrm{M}$)
3. a) The tension flange of a cast iron I-section beam is 240 mm wide and 50 mm deep, the compression flange is 100 mm wide and 20 mm deep where as the web is $300 \mathrm{~mm} \times 30 \mathrm{~mm}$. Find the load per meter run which can be carried over a 4 m span by a simply supported beam if the maximum permissible stresses are 90 MPa in compression and 24 MPa in tension.
b) Calculate the maximum stress induced in a cast iron pipe of external diameter 40 mm , of internal diameter 20 mm and of Length 4 m when the pipe is supported at its ends and carries a point load of 80 N at its center.
($8 \mathrm{M}+7 \mathrm{M}$)
www.FirstRanker.com

R10

SET - 1
4. a) The shear stress acting on a section of a beam is 50 kN , the section of the beam is T - shaped of dimensions $100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 20 \mathrm{~mm}$ as shown in Fig. the moment of inertia about horizontal neutral axis is $314.221 \times 10^{4} \mathrm{~mm}^{4}$. Calculate the shear stress at the neutral axis and at the junction of the web and the flange.

b) Determine the maximum shear stress for a circular section of radius \boldsymbol{R} and shear force acting on the section Is \boldsymbol{F}.
($8 \mathrm{M}+7 \mathrm{M}$)
5. a) A truss of span 5 m is loaded as shown in Figure 1, find the reactions and forces in the members marked 4,5 and 7 using method of section.

Figure 1

Figure 2
b) Analyze the plane truss shown in Figure 2, by the method of joints.
6. a) Derive the relation between slope, deflection and radius of curvature.
b) A beam 3 m long, simply supported at its ends, is carrying a point load W at the center. If the slope at the ends of the beam should not exceed 1^{0}, find the deflection at the center of the beam.
(7M+8M)
7. a) Derive the expressions for hoop, longitudinal and volumetric strains for thin cylinders
b) A water main 80 cm diameter contains water at a pressure head of 100 m . If the weight density of water is $9810 \mathrm{~N} / \mathrm{m}^{3}$, find the thickness of the metal required for the water main. Given the permissible stress as $20 \mathrm{~N} / \mathrm{mm}^{2}$.
(10M+5M)
8. a) Derive the stresses in compound thick cylinders due to internal fluid pressure
b) Find the thickness of metal necessary for a cylindrical shell of internal diameter 160 mm to with stand an internal pressure of $8 \mathrm{~N} / \mathrm{mm}^{2}$, the maximum hoop stress in the section is not to exceed $35 \mathrm{~N} / \mathrm{mm}^{2}$.
($8 \mathrm{M}+7 \mathrm{M}$)

