

www.FirstRanker.com

www.FirstRanker.com

	Coc	le No: R1631023 (R16) (SET -	- 1
		III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS	
		(Electrical and Electronics Engineering)	
T	ime: 3	3 hours Max. Ma	rks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 	
		<u>PART –A</u>	
•	a)	What is the condition for orthonormality?	[2M
	b)	If $x(t) \stackrel{F}{\leftrightarrow} X(f)$, then find FT of $g(t) = x(2t)$.	[2M
	c)	What is the minimum sampling rate required to sample the signal	[2M
	d)	$x(t) = 5\cos(\pi 500t) + 15\sin(\pi 1000t)$ Draw the magnitude response of ideal band stop filter.	[3M
	e)	What is the relation between Laplace transform and Fourier transform of a signal?	[3M
	f)	Find the z-transform of $x[n] = \left(\frac{1}{4}\right)^n u(-n-1)?$	[2M
		$\frac{PART - B}{PART - B}$	
	a)	Find the even and odd parts of the signal shown in Figure.	[7M
	b)	Show that the unit impulse function is the derivative of unit step function.	[7M
	a)	State and prove the time-convolution property of Fourier transform.	[7M
	b)	A periodic signal is defined over one period as	[7M
		$x_p(t) = \sin(\pi t); 0 < t < 1$	
		i) Plot $x_p(t)$ ii) Obtain Fourier series representation of $x_p(t)$	
		State and prove sampling theorem for band-limited signals.	[14M
	a)	State and prove Parseval's theorem.	[7M
	b)	Find the convolution of two signals $x(t) = u(t-1) - u(t+1)$ and $h(t) = e^{-at}u(t), a > 0.$	[7M
•	a)	Find the Laplace transform of $x(t) = e^{-at}u(t)$, $a > 0$ and plot its ROC.	[7M
	b)	State and prove the convolution property of Laplace transform.	[7M
	a)	State and prove the final-value theorem of z-transform.	[7M
	b)	Find the inverse z-transform of $X(z) = \frac{1}{1+z}$ with ROC $ z < 1$.	[7M

www.FirstRanker.com

www.FirstRanker.com

	Co	de No: R1631023 R16 SE	T - 2
		III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS	
		(Electrical and Electronics Engineering)	
Ti	ime: 3		Marks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 	
		<u>PART –A</u>	
1.	a)	If it is periodic, what is the fundamental period of $x(t) = Acos(2\pi 1000t) + Bsin(2\pi 500t)$?	[2M]
	b)	Find the FT of unit ramp function.	[2M]
	c)	What is aliasing effect?	[2M]
	d) e)	Define cross-correlation function. $\sum_{i=1}^{n} \frac{1}{i} = \frac{1}{i}$	[3M] [3M]
		Find the initial value of $x(t)$ with $X(s) = \frac{1}{s+1}$.	
	f)	State final-value theorem of z-transform.	[2M]
		<u>PART -B</u>	
2.	a)	Define the following:	[7M]
	b)	i) Energy-type signals ii) Power-type signals If $x(t) = u(t) - u(t-1)$. Plot $y(t) = x(2t+3)$.	[7M]
	0)	11 x(t) = u(t) = u(t - 1). That $y(t) = x(2t + 3)$.	[/14]
3.	a)	State and prove the time-scaling property of Fourier transform.	[7M]
	b)	Explain how the Fourier transform of a periodic signal can be obtained.	[7M]
4.	a)	Define the following:	[7M]
т.	<i>a)</i>	i) Sampling rate ii) Under Sampling iii) Nyquist interval	[/14]
	b)	Determine the conditions on sampling interval T_s , so that the signature $x(t) = cos(2\pi t) + sin(6\pi t)$ is uniquely represented by a discrete-time sequence $x[n] = x(nT_s)$.	
5.	a)	Explain about stability and causality of an LTI system.	[7M]
	b)	What do you understand by distortedness transmission? Explain.	[7M]
6.	a)	State and prove the initial-value theorem of Laplace transform.	[7M]
	b)	Determine the Laplace transform of the following signals:	[7M]
		i) $x_1(t) = \cos(\omega_0 t)$ ii) $x_2(t) = te^{-t}u(t)$	
7.	a)	State and prove time convolution property of Z-transform.	[7M]

www.FirstRanker.com

www.FirstRanker.com

	Code	R1631023 (R16) (SET -	- 3				
III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS (Electrical and Electronics Engineering)							
Tin	ne: 3 h		ks: 70				
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 					
		<u>PART –A</u>					
1.	a)	Evaluate the integral: $\int_{-\infty}^{\infty} \cos(200t)\delta(t-t_o)dt$	[2M]				
	b)	State the time-integration property of FT.	[2M]				
	c)	Define Nyquist interval.	[2M]				
	d)	What is the relation between rise time and bandwidth of a linear system?	[3M]				
	e)	Find the final value of $f(t)$ with $F(s) = \frac{10}{s+10}$.	[3M]				
	f)	Draw the ROC of $X(z)$ if $x[n] = \left(\frac{1}{8}\right)^n u[n]$. <u>PART -B</u>	[2M				
2.	a)	Define the following and give one example for each:	[7M				
	b)	i) Random signal ii) Deterministic signal iii) Multi channel signal Determine whether the signal $x(t) = (\cos(2\pi t))^2$ is periodic. If it is periodic, find the fundamental period.	[7M				
3.	a)	Use differentiation-in-time and differentiation-in-frequency properties to find the Fourier transform of the Gaussian pulse, $(t) = \left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{t^2}{2}}$.	[7M				
	b)	Find the Hilbert transform of the signal $x(t) = (\sqrt{2\pi})e^{-2}$.	[7M				
4.	a)	Define the following: i) Under sampling ii) Over sampling iii) Critical sampling	[7M				
	b)	Compare natural sampling and flat top sampling.	[7M				
5.	a)	A signal is given by $x(t) = u(t) - u(t - 1)$. Convolve $x(t)$ with itself and plot	[7M				
	b)	the result. Draw the ideal filter characteristics. What is the condition for realizability of these filters?	[7M				
6.	a)	Find the inverse Laplace transform of i) $X(s) = \frac{1}{s+2}$ with ROC $Re(s) > -2$	[7M				
	• 、	ii) $X(s) = \frac{1}{(s+2)(s+3)}$ with ROC $Re(s) > -2$					
	b)	List the properties of ROC for Laplace transforms	[7M]				
7.	a)	State and prove the convolution property of z-transform.	[7M]				
	b)	State and prove time-advance property of z-transform.	[7M				

Code No: R1631023

www.FirstRanker.com

www.FirstRanker.com

R16

SET - 4

III B. Tech I Semester Regular Examinations, October/November - 2018 SIGNALS AND SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B ~~~~~~~ PART –A Plot the signal x(t) = 5u(2t - 1), where u(t) is unit step function. 1. a) [2M] b) Define Fourier complex spectrum [2M] c) Define band-limited signal. [2M] What is the relation between convolution and correlation? d) [3M] State differentiation property of Laplace transforms. e) [3M] Draw the pole-zero plot of $H(z) = \frac{z}{1+z}$ f) [2M] **PART-B** Find the energy and power of the signal $x(t) = 5\cos(\pi t) + \sin(5\pi t)$. 2. a) [7M] Explain how signals can be approximated using orthogonal functions. b) [7M] Find the Fourier transform of signum function and plot its spectrum. 3. a) [7M] Derive the relation between exponential Fourier coefficients and trigonometric b) [7M] Fourier coefficients. Explain how a band-limited signal can be reconstructed from its samples. 4. a) [7M] Write notes on flat-top sampling. b) [7M] Define the following: 5. a) [7M] i) Signal bandwidth ii) System bandwidth iii) Causality of a filter State all the properties of Auto correlation function. b) [7M] 6. State and prove the final-value theorem of Laplace transform. a) [7M] Find the Laplace transform and ROC of $x(t) = sgn(t) + e^{-2t}u(t) + u(t)$. b) [7M] Find the inverse z-transform of $X(z) = \frac{1}{1-az^{-1}}$ with ROC |z| < |a|7. [7M] a) State and prove the differentiation in z property of z-transform. [7M] b)
