

www.FirstRanker.com

Code No: RT32042

b)

R13

SET - 1

[8M]

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 **DIGITAL SIGNAL PROCESSING**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A**is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

		3. Answer any THREE Questions from Fart-B *****		
		PART –A		
1	a)	What are the elementary discrete time signals?	[3M]	
	b)	Find the IDFT of Y (k) = $(1, 1, 1, 0)$	[4M]	
	c)	State the properties of ROC.	[4M	
	d)	Why IIR filters do not have linear phase?	[3M]	
	e)	Explain how a multi-rate system is different from a single-rate system?	[4M]	
	f)	Explain the basic architectural features of programmable DSP devices.	[4M]	
<u>PART -B</u>				
2	a)	Find the periodicity of the signal $x(n) = \sin(2\pi n / 3) + \cos(\pi n / 2)$	[4M]	
	b)	Explain the frequency response of discrete time system.	[8M]	
	c)	What is the causality condition for an LTI system?	[4M]	
3	a)	Find the DFT of $x[n] = a^n$ for $0 \le n \le 3$ = 0 otherwise.	[8M]	
	b)	Find the linear convolution of the sequences $x[n]=\{1,4,0,9,-1\}$ and $h[n]=\{-3,-4,0,7\}$	[8M]	
4	a)	State and prove any three properties of Z- Transform.	[8M]	
	b)	Obtain direct form I, direct form II and cascade realizations of system described by the equation, $y[n]=y[n-1]-(1/2)y[n-2]+x[n]-x[n-1]+x[n-2]$	[8M]	
5	a)	Determine the system function H(Z) of the lowest order Chebyshev digital filter that	[8M]	
		meets the following specifications. i) 3 db ripple in the passband $0 \le \omega \le 0.3\pi$		
		ii) At least 40 dB attenuation in the stopband $0.35\pi \le \omega \le \pi$. Use the bilinear transformation.		
	b)	Explain the need for the use of window sequence in the design of FIR filter. Describe	[8M]	
		the window sequence generally used and compare the properties.		
6	a)	What is Interpolation? Explain about the frequency domain description of an Interpolator.	[8M]	
	b)	What do you mean by fractional sampling rate conversion? Explain with an example	[8M]	
	-,	of converting 48 kHz signal to 44.1 kHz signal using multi-stage fractional sampling rate converter.	r- 1	
7	a)	Discuss in detail the Basic Architectural features of programmable DSP devices,	[8M]	
-			503.53	

www.FirstRanker.com

Discuss in detail the Pipeline Operation of TMS320C54XX Processors.

Code No: RT32042 (R13

SET - 2

[8M]

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A**is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART-A 1 Define discrete time signal and give examples. [3M] a) What are the advantages FFT over DFT. [4M] b) What are the different methods of evaluating inverse z transform? c) [3M] d) Draw the indirect form realizations of FIR systems? [4M] Derive transfer function of an Interpolator. e) [4M] f) Discuss about the various sources of errors in the computation using DSP processor [4M] implementations. PART-B Discuss the frequency domain representation of linear time-invariant systems. 2 a) [8M] Determine the frequency response for the system given by b) [8M] y(n)-3/4y(n-1)+1/8 y(n-2) = x(n)-x(n-1)Find the DFT of the sequence $x[n]=\{1,2,1,2,1,2,1,2\}$ using decimation in time 3 a) [8M] algorithm. b) State and prove any four Properties of discrete Fourier series. [8M] With respect to Z transforms define the properties of ROC. 4 a) [8M] described by the transfer b) Obtain the parallel form realization for the IIR system function $H(z) = \frac{3 + 3.6z^{-1} + 0.6z^{-2}}{1 + 0.1z^{-1} - 0.2z^{-2}}$ 5 Convert the following analog transfer function in to digital using bilinear transform [8M] a) and IIT methods with T=1sec $H(s) = \frac{s}{(s+3)(s+9)}$ b) Design a HPF of length 7 with cut off frequency of 2 rad/sec using Hamming [8M] window.. With necessary derivations explain the operation of sampling rate conversion by a [8M] 6 a) factor of I/D in both frequency and time domains. b) What are the applications of multirate digital signal processing? [8M] Explain the various pipeline programming models that are adapted in DSP 7 a) [8M]

Explain the Bus Architecture of DSP Processor www.FirstRanker.com

processors.

b)

www.FirstRanker.com

Code No: RT32042

R13

SET - 3

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in Part-Ais compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

1	a)	Determine whether the following system given by $y(n) = log10[\{x(n)\}]$ is Casual or not.	[3M]
	b)	What are the properties of convolution sum?	[4M]
	c)	List the applications of Z – transforms.	[3M]
	d)	Compare Chebyshev Filter and Butterworth Filter.	[4M]
	e)	Derive transfer function of Decimator.	[4M]
	f)	What are the functional units present in the TMS320C54XX processor?	[4M]
		PART -B	
2	a)	Consider a signal $x[n] = (-a)^{-n} u[n]$ determine the spectrum $X(w)$.	[8M]
	b)	Determine the response of Second order Discrete Time system governed by the difference equation $y(n)-2y(n-1)-3y(n-2)=x(n)+4x(n-1)$, $n\ge 0$, when the input signal is $x(n)=2^nu(n)$, with initial conditions $y(-2)=0$, $y(-1)=5$.	[8M]
3	a)	Explain the significance of FFT algorithms. Draw the basic butterfly diagram for	[8M]
	b)	radix - 2 DIT-FFT. Find the DFT of $x[n]=\{0.5,0.5,0.5,0.5,-1,-1,-1,-1\}$ using decimation in time	[8M]
	U)		[OIVI]
4	-)		row.r
4	a)	algorithm. Find the Z-Transform $x[n] = (\frac{1}{3})^n Sin[\frac{\pi}{4}n] u[n]$.	[8M
	b)	Realize $H(z) = \frac{1 + 0.6z^{-2} + 0.2z^{-1}}{3 + 5z^{-1} + 4^{-2}}$ using Direct form I and Direct form II structures	[8M
5	a)	Distinguish between "maximally flat magnitude response" and "equiripple magnitude	[8M
	b)	response" filters.	ron <i>i</i> r
	b)	Explain the impulse invariance method of IIR filter design.	[8M
6	a)	Explain the concept of multi rate signal processing along with two applications of it	[8M
	b)	Explain how sampling rate conversion of band pass signals can be achieved.	[8M
	,		-
7	a)	Explain in detail the circular addressing mode and bit-reversed addressing mode.	[8M
	b)	Explain Memory Access schemes in DSPs.	[8M
		•	-

Code No: RT32042

R13

SET - 4

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A**is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

Determine whether the system defined by $y(n) = x(-n^2-2)$ is time invariant or not. 1 [3M] a)

[4M]

What is FFT? How many multiplications and additions are required to compute N point b) DFT using redix-2 FFT?

[4M]

State and prove Parsvel's theorem. c)

[4M]

Why FIR filters are always stable? d) e) What is Down sampling?

[3M]

Explain the role of on-chip peripherals for programmable digital signal processors. f)

[4M]

PART-B

2 For each case determine the system is stable or causal a)

[10M]

i) $h(n) = \sin (\pi n / 2)$ ii) $h(n) = \delta(n) + \sin \pi n$ iii) h(n) = 2 n u(-n)Show that an LTI system can be described by its unit sample response. b)

[6M]

State and prove convolution Properties of DFT. a)

[8M]

Compute the DFT for the sequence (0.5,0.5,0.5,0.5,1,1,1,1) using DIF-FFT b)

[8M]

Find the Inverse Z-Transform of $X(z) = \frac{1 - \frac{1}{3}z^{-1}}{(1 - z^{-1})(1 + 2z^{-1})}$, |z| > 2 using partial fractions a) [8M 4

method.

b)

a)

5

Obtain the cascade form realization for the recursive IIR system

described by the

[8M

transfer function $H(z) = \frac{3 + 3.6z^{-1} + 0.6z^{-2}}{1 + 0.1z^{-1} - 0.2z^{-2}}$

[8M

b) A low pass filter is to be designed with the following desired frequency response.

Explain the design procedure for IIR filters using Butterworth approximations.

[8M

$$H_d(e^{jw}) = e^{-j2w}, -\pi/4 \le \omega \le \pi/4$$
$$0, \pi/4 \le |\omega| \le \pi$$

Determine the filter coefficients $h_d(n)$ if the window function is defined as

$$\omega(n) = 1, \qquad 0 \le n \le 4$$

otherwise

Also determine the frequency response $H(e^{jw})$ of the designed filter.

www.FirstRanker.com

www.FirstRanker.com

Code No: RT32042 (R13) (SET - 4)

6 a) With the help of an example define Decimation and Interpolation operations in DSP. [8M]

b) A signal, x(n), at a sampling frequency of 2.048 kHz is to be decimated by a factor of [8M] 32 to yield a signal at a sampling frequency of 64 Hz. The signal band of interest extends from 0 to 30 Hz. The anti-aliasing digital filter should satisfy the following specifications:

Pass band deviation 0.01 dB Stop band deviation 80dB Pass band 0-30Hz Stop band 32-64 Hz

The signal components in the range from 30 to 32 Hz should be protected from aliasing. Design a suitable two stage decimator.

- 7 a) What is the difference between internal and external modes of clocking of [8M] TMS320C54XX Processor?
 - b) Explain different pipeline programming models that are adapted in DSP processors? [8M]

WWW.FilestP****

2 of 2