

www.FirstRanker.com

Code No: RT32043

R13

SET - 1

[6M]

[10M]

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 **DIGITAL COMMUNICATIONS**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

		$\underline{\mathbf{PART}} - \underline{\mathbf{A}}$	
1	a)	A signal x(t) is band limited to 2 kHz while y(t) is band limited to 3 kHz. Find the	[4M]
	b)	Nyquist sampling rate for (i) x(2t) (ii)y(t-3) Sketch the block diagram of ASK generation.	[3M]
	b)		
	c)	Construct FSK waveform for the input data "1101"	[3M]
	d) e)	Verify that I(X;Y)=I(Y;X) Calculate the capacity of AWGN channel with bandwidth of 1MHz and a S/N ratio of 40dB.	[4M] [4M]
	f)	Differentiate block codes and convolution codes.	[4M]
	,	PART -B	. ,
2	a)	What is slope overload distortion and granular noise in Delta Modulation? How is it removed in ADM?	[10M]
	b)	A speech signal of maximum frequency 3.4 KHz is applied to a delta modulator whose bit rate is 20 Kbps. Determine minimum step size for the delta modulation so that there is no slope overload.	[6M]
3	a) b)	Explain the similarities between BPSK and BFSK. A binary data stream 0010010011 needs to be transmitted using DPSK Technique. Prove that the reconstruction of the DPSK signal is independent on the choice of the extra bit.	[8M] [8M]
4	a)	What is a matched filter? How does it differ from an optimum filter? Derive an expression for impulse response of matched filter	[10M]
	b)	Find the probability of error of BPSK.	[6M]
5	a)	What is mutual information? State and prove its properties.	[10M]
	b)	What is joint and conditional entropy? Obtain the relationship between them	[6M]
6	a)	A DMS X has 4 symbols x1, x2, x3, x4 with probabilities ½, ¼, 1/8, 1/8 respectively. Construct Shannon-Fano code for X and calculate the code efficiency.	[8M]
	b)	Show that the channel capacity of an ideal AWGN channel with infinite BW is	[8M]
		given by $C_{\infty} \approx 1.44 \frac{S}{\eta} b/s$.	
		Where S is the average signal power and $\eta/2$ is the power spectral density of WGN	

What are cyclic codes? List their advantages and disadvantages.

b) Explain the Viterbi algorithm with example www.FirstRanker.com

Code No: RT32043

b)

R13

SET - 2

[8M]

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

		PART –A	
1	a)	Find the Nyquist sampling rate for the following signals (i) $5 \cos(1000\pi t) \cos(4000\pi t)$ (ii) $\sin(100\pi t)$	[4M]
	b)	Why PSK is always preferable over ASK in coherent detection?	[3M]
	c)	Define the probability of error.	[3M]
	d)	Calculate the average information content in the English language, assuming that each of the 26 characters in the alphabet occurs with equal probability.	[4M]
	e)	Define the efficiency of a Source code.	[4M]
	f)	Mention differences between systematic and non-systematic codes. PART -B	[4M]
2	a)	How is differential PCM advantageous over PCM? Give the block diagrams of DPCM transmitter and receiver and analyze its parameters.	[10M]
	b)	In a binary PCM system, the output signal to quantizing noise ratio is to be held to a minimum value of 40 dB. Determine the number of levels and find the corresponding signal to quantizing noise ratio.	[6M]
3	a)	Determine the bandwidth required for M-ary FSK system. Draw the geometrical representation of M-ary FSK signals and find out the distance between the signals.	[10M]
	b)	What is the principle of QPSK system? Compare binary PSK and QPSK schemes .	[6M]
4	a)	Justify the significance of matched filter and give its importance.	[6M]
	b)	A binary receiver system receives a bit rate of 1Mbps. The waveform amplitude is 5 mV and the noise power spectral density is 0.5 x10 ⁻¹¹ W/Hz. Calculate the average bit error probability if the modulation schemes are ASK, FSK and PSK.	[10M]
5	a)	What is entropy? State and prove its properties.	[8M]
	b)	What is average information? State and prove its properties	[8M]
6	a)	A DMS X has 5 equally likely symbols i) Construct a Shannon-Fano code for X, calculate the efficiency of the code ii) Repeat for Huffman code and compare the results.	[8M]
_	b)	Consider a AWGN channel with 4kHz bandwidth and the noise power spectral density $\eta/2 = 10^{-12}$ W/Hz. The signal power required at the receiver is 0.1mW. Calculate the capacity of this channel.	[8M]
7	a)	Explain sequential decoding procewww foirstRanker.com	[8M]

Draw the state diagram, tree diagram, and trellis diagram for k=3, rate 1/3 code

Code No: RT32043

R13

SET - 3

[MR]

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any THREE Questions from Part-B

PART -A

1	a)	A signal $x(t)$ is band limited to 2 kHz while $y(t)$ is band limited to 3 kHz. Find the Nyquist sampling rate for (i) $x(t)+y(t)$ (ii) $x(t)y(t)$	[4M]
	b)	Consider the binary square 0100101. Draw the waveforms for the following signaling formats i) bipolar RZ signaling ii) AMI(alternate mark inversion) RZ signaling format	[4M]
	c)	What is the ambiguity in the decoded output in the case of PSK systems?	[3M]
	d)	If $I(x1)$ is the information carried by message $x1$ and $I(x2)$ is the information carried by message $x2$, then prove that the amount of information carried compositely due to $x1$ and $x2$ is $I(x1,x2) = I(x1)+I(x2)$	[4M]
	e)	Find the capacity of Gaussian channel of bandwidth 4KHz with noise PSD 10 ⁻⁹ W/Hz when signal energy is 0.1 J.	[4M]
	f)	Give details for hamming distance and specify the conditions to satisfy hamming code.	[3M]
		PART -B	
2	a)	Discuss the elements of digital communication system and list the advantages of it.	[6M]
	b)	Consider an audio signal with spectral components limited to the frequency band of 300Hz to 3300Hz. A PCM signal is generated with a sampling rate of 8000 samples/sec. The required output-signal-to-quantizing-noise ratio is 30dB.	[10M]
		i) What is the minimum number of uniform quantization levels needed and what is the minimum number of bits per sample needed? ii) Calculate the minimum system bandwidth required.	
3	a)	How the generation of DPSK signals shall be done?	[6M]
	b)	Explain the working principles of QPSK modulation and demodulation.	[10M]
4	a) b)	Explain about ASK system and derive the expression for error probability of binary ASK. Binary data is transmitted over a telephone line with usable bandwidth of 2400 Hz using the FSK signaling scheme. The transmit frequencies are 2025 & 2225 Hz, and the data rate is 300 bits/Sec. The average signal to noise power ratio at the output of the channel is 6dB. Calculate Probability of error for the coherent demodulation scheme.	[10M] [6M]
5	a)	Show that the entropy for a discrete memory less source is maximum when the output symbols are equally probable.	[8M]
	b)	What is mutual information? And prove that for a loss less channel $H(X Y) = 0$ and also prove that $H(X,Y) = H(X Y) + H(Y)$.	[8M]
6	a)	A DMS X has five symbols x1, x2, x3, x4 and x5 with respective probabilities 0.2, 0.15, 0.05, 0.1 and 0.5. Construct Huffman code and calculate the code efficiency.	[8M]
	-b) -	Explain the tradeoff between bandwidth and signal to noise ratio.	[8M]
7	a)	What are hamming codes? Discu wwwweFinstRanker:toom and detection capability of hamming code.	[8M]
	• .		503.53

h) Compare linear block codes and cyclic codes with an example

Code No: RT32043

R13

SET - 4

www.FirstRanker.com

III B. Tech II Semester Regular/Supplementary Examinations, April -2018 **DIGITAL COMMUNICATIONS**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

PART –A			
1	a)	Discuss the advantages of DM over PCM.	[4M]
	b)	Construct the constellation diagram for QPSK.	[4M]
	c)	Give the basic components of a filter in baseband data transmission and explain briefly.	[3M]
	d)	Show that $I(X;Y) = H(Y) - H(Y X)$	[4M]
	e)	Write short notes on prefix-free code with example.	[4M]
	f)	Discuss about convolutional interleaving.	[3M]
		PART -B	
2	a)	Explain quantization error and derive an expression for maximum SNR in PCM system that uses Linear quantization.	[10M]
	b)	Given a sine wave of frequency fm and amplitude Am applied to a delta modulator having step size Δ . Find the condition on Am for which slope overload distortion will occur.	[6M]
3	a)	In which way DEPSK is advantageous over DPSK? Explain with an example.	[6M]
	b)	Explain the demodulation of FSK using coherent detection.	[10M]
4	a)	Explain how integrator is used to detect the baseband signal. Obtain an expression for S/N of integrator and dump receiver.	[10M]
	b)	Derive the probability of error for FSK.	[6M]
5	a)	Define information. Show that information contained in a symbol is inversely proportional to the probability of occurrence of that symbol.	[6M]
	b)	The source 'X' generates M message, then prove the following inequality for source entropy $H(x):0 \le H(X) \le \log_2 M$.	[10M]
6	a)	State Shannon's source coding theorem and explain its implications	[8M]
	b)	A DMS has symbols a,b,c with probabilities 0.65, 0.2, 0.15 respectively. i) Calculate the entropy of the source ii) Calculate the entropy of second order extension of the source	[8M]
7	a) b)	Give the matrix description of the linear block codes. What is the use of syndrome? Draw the (n-k) syndrome calculation circuit for (n,k) cyclic code and explain its operation.	[8M] [8M]
