www.FirstRanker.com
www.FirstRanker.com

Code No: RT32054

SET-1

## III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DESIGN AND ANALYSIS OF ALGORITHMS <br> (Common to Computer Science Engineering and Information Technology)

## Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B
*****
PART-A
1 a) Devise an algorithm that sorts a collection of $\mathrm{n} \geq 1$ elements of arbitrary type.
b) State the best, average and worst case complexities of binary search for successful and unsuccessful search.
c) Write the functional difference of divide and conquer greedy method.
d) State the principle of optimality. Find two problems for which the principle does not hold.
e) Define Implicit constraints and Explicit constraints with example.
f) What is branch and bound algorithm? How it is different from backtracking?

## PART -B

2 a) Prove the theorem if $f(n)=a_{m} n^{m}+\ldots \ldots+a_{1} n+a_{0}$, then $f(n)=O\left(n^{m}\right)$.
b) Describe the Pseudo code conventions for specifying algorithms of recursive and an iterative algorithm to compute $n$ !
c) Determine the frequency counts for all statements in the following algorithm
segment.
$\mathrm{i}:=1$;
while $(\mathrm{i} \leq \mathrm{n})$ do
\{
$\mathrm{x}:=\mathrm{x}+1$;
$\mathrm{i}:=\mathrm{i}+1$;
\}
a) Solve the recurrence relation using substitution method
$T(n)=\{T(1)$ $\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n}) \quad \mathrm{n}>1 \quad$, where $\mathrm{a}=5, \mathrm{~b}=4$, and $\mathrm{f}(\mathrm{n})=\mathrm{cn}^{2}$.
b) Apply quick sort algorithm to sort the list. E, X, A, M, P, L, E in alphabetical order.
c) Analyze the best, average and worst case complexity of quick sort.

4 a) Compare BFS and DFS algorithm with an example graph and denote its time complexities.
b) Derive time complexity of job sequencing with deadlines .Obtain the optimal solution when $n=5,(p 1, p 2, \ldots)=(20,15,10,5,1)$ and $(d 1, d 2, \ldots)=(2,2,1,3,3)$.

## 1 of 2

Code No: RT32054

5 a) Describe about reliability design with an example.
b) Obtain the solution to knapsack problem by Dynamic Programming method $\mathrm{n}=6$, (p1, p2, ..p6) $=(\mathrm{w} 1, \mathrm{w} 2, \ldots \mathrm{w} 6)=(100,50,20,10,7,3)$ and $\mathrm{m}=165$.

6 a) Explain how backtracking is used for solving n- queens problem. Show the state space tree.
b) Describe the algorithm for Hamiltonian cycles and Determine the order of magnitude of the worst-case computing time for the backtracking procedure that finds all Hamiltonian cycles.

7 a) Explain the principles of FIFO Branch- and-Bound.
b) Consider the travelling salesperson instance defined by the cost matrix.

Obtain the reduced cost matrix and the portion of the state space tree that will be generated by LCBB.
$\left[\begin{array}{ccccc}\infty & 7 & 3 & 12 & 8 \\ 3 & \infty & 6 & 14 & 9 \\ 5 & 8 & \infty & 6 & 18 \\ 9 & 3 & 5 & \infty & 11 \\ 18 & 14 & 9 & 8 & \infty\end{array}\right]$

2 of 2

# III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DESIGN AND ANALYSIS OF ALGORITHMS <br> (Common to Computer Science Engineering and Information Technology) 

Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B *****

## PART -A

a) What are the four distinct areas of study of algorithm?
b) Is quick sort a stable sorting method? Justify.
c) What is meant by 'ordering paradigm'? Give an example problem. How it is different with 'subset paradigm' of the greedy technique.
d) What is purging or dominance rule. How it is applicable.
e) Define state space and state space tree.
f) Describe about Bounding with suitable example.

PART -B
a) Prove the theorem if $f(n)=a_{m} n^{m}+\ldots \ldots+a_{1} n+a_{0}$ and $a_{m}>0$, then $f(n)=\Theta\left(n^{m}\right)$.
b) Write a recursive algorithm to find the sum of first n integers and Derive its time complexity.
c) Mention the important advantages and disadvantages of using randomized algorithms.
a) Can we say that the time for Merge Sort is $\Theta(n \log n)$.What is its worst and best time of procedure for Merge Sort.
b) Write recursive binary search algorithm with an example and analyze time complexity. List the applications of binary search.
c) Describe the control abstraction for divide and conquer.
a) Write about Dynamic Programming General method.
b) Describe the algorithm to find minimum-cost binary search tree. Show that the computing time of function OBST is $O\left(n^{2}\right)$.
a) Use an algorithm for greedy strategies for the knapsack to find an optimal solution to the knapsack instance $n=7, m=15,(p 1, p 2 \ldots, p 7)=(10,5,15,7,6,18,3)$, and $(w 1, w 2, \ldots w 7)=(2,3,5,7,1,4,1)$.
b) Apply greedy algorithm to generate single-source shortest path with an example graph. Mention its time complexity.
a) Mention an algorithm that Presents a recursive formulation of the backtracking technique.
b) Find all possible subsets of $w$ that sum to $m$. Let $w=\{5,7,10,12,15,18,20\}$ and $m=35$ and draw the portion of the state space tree that is generated.
a) Draw the portion of the state space tree generated by LCBB for the knapsack
instance: $\mathrm{n}=5,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4, \mathrm{p} 5)=(10,15,6,8,4),(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4, \mathrm{w} 5)=(4,6,3,4,2)$, and $\mathrm{m}=12$.
b) Apply branch and bound algorithm to solve the travelling salesman problem with an example.

# III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DESIGN AND ANALYSIS OF ALGORITHMS <br> (Common to Computer Science Engineering and Information Technology) 

Time: 3 hours
Max. Marks: 70

## Note: 1. Question Paper consists of two parts (Part-A and Part-B) <br> 2. Answering the question in Part-A is compulsory <br> 3. Answer any THREE Questions from Part-B <br> ***** <br> PART - A

1 a) List out the criteria's of an algorithm.
b) Mention the advantages and disadvantages of binary search.
c) Represent a high-level description of job sequencing algorithm.
d) List the features of dynamic programming.
e) Define chromatic number of a graph and planar graph.
f) What is branch and bound algorithm? How it is different from backtracking?

## PART - B

a) Show that the following equalities are incorrect with suitable notations
i) $10 n^{2}+9=O(n)$
ii) $\mathrm{n}^{2} \operatorname{logn}=\Theta\left(\mathrm{n}^{2}\right)$
b) Implement an algorithm to generate Fibonacci number sequence and determine the time complexity of the algorithm using the frequency method.
c) Write about three popular methods to arrive at amortized costs for operations with example.
a) What is stable sorting method? Is merge sort a stable sorting method? Justify.
b) Sort the list of the elements $10,5,7,6,1,4,8,3,2,9$ using merge sort algorithm and show its computing time is $O(n \log n)$.
c) Define internal and external node of binary decision tree. Draw the binary decision tree for binary search with $\mathrm{n}=14$.
a) Describe the greedy method control abstraction for the subset paradigm.
b) Define spanning tree. Compute a minimum cost spanning tree for the graph of figure

a) Describe the Travelling sales person problem and discuss how to solve it using dynamic programming.
b) Design a three stage system with device types $\mathrm{D}_{1}, \mathrm{D} 2, \mathrm{D} 3$. The costs are $\$ 30, \$ 15, \$ 20$ respectively. The cost of the system is to be no more than $\$ 105$.the reliability of each device type is $00.9,0.8$ and 0.5 respectively.
www.FirstRanker.com
www.FirstRanker.com

Code No: RT32054
R13
SET-4

## III B. Tech II Semester Regular/Supplementary Examinations, April -2018 DESIGN AND ANALYSIS OF ALGORITHMS <br> (Common to Computer Science Engineering and Information Technology)

Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B
*****

## PART -A

1 a) Define Little Oh notation with example.
b) Describe the time complexity of Divide And Conquer in the recurrence form.
c) What is knapsack problem? State knapsack problem formally.
d) Distinguish Greedy method and Dynamic Programming.
e) Denote live node and dead node with example.
f) Compare LC and FIFO brand- and-bound.

## PART -B

2 a) Write a recursive algorithm to solve Towers of Hanoi problem with an example.
b) Describe about probabilistic analysis in detail.
c) Implement iterative function for sum of array elements and find the time complexity use the increment count method.

3 a) Why is it necessary to have the auxiliary array b[low: high] in function Merge?
b) Apply Merge Sort to sort the list $\mathrm{a}[1: 10]=(31,28,17,65,35,42 ., 86,25,45,52)$. Draw the tree of recursive calls of merge sort, merge functions.
c) Write iterative binary search algorithm with example.

4 a) Use the greedy algorithm for sequencing unit time jobs with deadlines and profits to generate the solution when $n=7,(p 1, p 2, \ldots p 7)=(3,5,20,18,1,6,30)$, and $(d 1, d 2, \ldots, d 7)=(1,3,4,3,2,1,2)$.
b) Define spanning tree. Compute a minimum cost spanning tree for the graph of figure using kruskal's algorithm.


5 a) Describe All-pairs shortest path algorithm with example. Give the time complexity of the algorithm.
b) Consider $\mathrm{A}_{1}=5 \mathrm{X} 4, \mathrm{~A}_{2}=4 \mathrm{X} 6, \mathrm{~A}_{3}=6 \mathrm{X} 2, \mathrm{~A}_{4}=2 \mathrm{X} 7 . \mathrm{P}_{1}=5, \mathrm{P}_{2}=4, \mathrm{P}_{3}=6, \mathrm{P}_{4}=2, \mathrm{P}_{5}=7$ and

Apply matrix chain multiplication to obtain optimal sequence.

## 1 of 2

## R13

SET - 4

6 a) Describe an algorithm to solve 8 -queen problem and Show the state space tree.
b) Write an algorithm for finding all $m$-coloring of a graph with example.

7 a) What is branch \& bound? Explain the role of bounding function in it using LC - search
b) Generate FIFO branch and bound solution for the given knapsack problem. $\mathrm{m}=15$, [8M] $\mathrm{n}=3$.
$\left(\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)=(10,6,8) \quad\left(\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}\right)=(10,12,3)$

